Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1068-1071

Article title

Formation of Uniform Germanium Islands on Silicon Substrate Using Nickel as Catalyst by Thermal Evaporation Method

Content

Title variants

Languages of publication

EN

Abstracts

EN
Uniform germanium islands (GIs) were grown on Si (100) using a nickel layer as catalyst through the physical vapor deposition of germanium (Ge) powder at 1000°C at different deposition times. Prior to the deposition of Ge layer, nickel (Ni) catalyst was deposited on silicon substrates via radio frequency magnetron sputtering technique. Scanning electron microscopy results showed that the increase in deposition time resulted in a variation in surface morphology. Energy dispersive X-ray spectrometer analysis found that the GI samples composed of Ni element indicating the role of Ni in uniform Ge islands formation. The X-ray diffraction pattern spectra revealed that the GIs exhibited a Ge cubic structure and the intensity of Ge peaks varies with deposition time. In-plane strain indicated that the strain caused by the substrate is tensile and changed to compressive strain at the longer deposition time. The Raman spectra exhibited a red shift in the Ge-Ge peak, compared with the bulk Ge, as a result of compressive strain of the GIs. Fourier transform infrared spectrum analysis also indicated that the optical band gap Eg values of GIs can be varied by deposition time.

Keywords

EN

Contributors

author
  • Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia 11800, Pulau-Pinang, Malaysia
  • Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia, 40450 Malaysia
  • Department of Applied Sciences, Universiti Teknologi MARA Pulau Pinang, 13500 Pulau Pinang, Malaysia
author
  • Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia 11800, Pulau-Pinang, Malaysia
author
  • Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia 11800, Pulau-Pinang, Malaysia
author
  • Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia 11800, Pulau-Pinang, Malaysia
  • Faculty of Electrical Engineering, Universiti Teknologi MARA Pulau Pinang, 13500 Pulau Pinang, Malaysia

References

  • [1] G. Capellini, L. Di Gaspare, F. Evangelisti, E. Palange, Applied Physics Letters 70, 493 (1997), doi: 10.1063/1.118191
  • [2] M. Borgström, V. Zela, W. Seifert, Nanotechnology 14, 264 (2003), doi: 10.1088/0957-4484/14/2/331
  • [3] K. Das, M. Goswami, A. Dhar, B. Mathur, S. Ray, Nanotechnology 18, 175301 (2007), doi: 10.1088/0957-4484/18/17/175301
  • [4] A. Samavati, Z. Othaman, S. Ghoshal, M. Dousti, R. Amjad, Chinese Physics Letters 29, 118101 (2012), doi: 10.1088/0256-307X/29/11/118101
  • [5] K.-F. Wang, Y. Zhang, W. Zhang, Applied Surface Science 258, 1935 (2012), doi: 10.1016/j.apsusc.2011.06.150
  • [6] I. Goldfarb, L. Banks-Sills, R. Eliasi, Applied Physics Letters 85, (2004), doi: 10.1063/1.1787958
  • [7] T. Merdzhanova, S. Kiravittaya, A. Rastelli, M. Stoffel, U. Denker, O. Schmidt, Physical Review Letters 96, 226103 (2006), doi: 10.1103/PhysRevLett.96.226103
  • [8] I. Kovačević, B. Pivac, P. Dubček, H. Zorc, N. Radić, S. Bernstorff, M. Campione, A. Sassella, Applied Surface Science 253, 3034 (2007), doi: 10.1016/j.apsusc.2006.06.048
  • [9] A.V. Dvurechenskii, J.V. Smagina, R. Groetzschel, V.A. Zinovyev, V.A. Armbrister, P.L. Novikov, S.A. Teys, A.K. Gutakovskii, Surface and Coatings Technology 196, 25 (2005), doi: 10.1016/j.surfcoat.2004.08.082
  • [10] H.-Y. Tuan, D.C. Lee, T. Hanrath, B.A. Korgel, Chemistry of materials 17, 5705 (2005), doi: 10.1021/cm0513031
  • [11] J.-F. Hsu, B.-R. Huang, Thin Solid Films 514, 20 (2006), doi: 10.1016/j.tsf.2006.02.013
  • [12] Z. Kolahdouz, M. Kolahdouz, H. Ghanbari, S. Mohajerzadeh, S. Naureen, H.H. Radamson, Materials Science and Engineering: B 177, 1542 (2012), doi: 10.1016/j.mseb.2012.01.021
  • [13] J.-P. Borel, Surface Science 106, 1 (1981), doi: 10.1016/0039-6028(81)90228-4
  • [14] J. Hartmann et al., Journal of Applied Physics 95, 5905 (2004), doi: 10.1063/1.1699524
  • [15] G. Kartopu, S.C. Bayliss, V.A. Karavanskii, R.J. Curry, R. Turan, A.V. Sapelkin, Journal of Luminescence 101, 275 (2003), doi: 10.1016/S0022-2313(02)00570-7
  • [16] D.R. dos Santos, I.L. Torriani, Solid State Communications 85, 307 (1993), doi: 10.1016/0038-1098(93)90021-E
  • [17] M. Fujii, S. Hayashi, K. Yamamoto, Applied Physics Letters 57, 2692 (1990), doi: 10.1063/1.103802
  • [18] R. Al Asmar, J.P. Atanas, M. Ajaka, Y. Zaatar, G. Ferblantier, J.L. Sauvajol, J. Jabbour, S. Juillaget, A. Foucaran, Journal of Crystal Growth 279, 394 (2005), doi: 10.1016/j.jcrysgro.2005.02.035
  • [19] J. Tauc, in: Amorphous and Liquid Semiconductors 4: Plenum Press, New York USA, 1974
  • [20] N.V. Vostokov, Z.F. Krasil'nik, D.N. Lobanov, A.V. Novikov, M.V. Shaleev, A.N. Yablonskii, Phys. Solid State 46, 60 (2004), doi: 10.1134/1.1641921

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4057kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.