Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1059-1061

Article title

Cyclic Performance Tests of Si/MWCNT Composite Lithium Ion Battery Anodes at Different Temperatures

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study silicon-multi walled carbon nanotube (Si-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25°C, 35°C, 50°C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Silicon was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Si-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

Keywords

Contributors

author
  • Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187, Turkey
author
  • Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187, Turkey
author
  • Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187, Turkey

References

  • [1] Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, H.M. Cheng, Electrochim. Acta 51, 4994 (2006), doi: 10.1016/j.electacta.2006.01.043
  • [2] W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N.L. Wu, J. Power Sources 140, 139 (2005), doi: 10.1016/j.jpowsour.2004.07.032
  • [3] N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, J. Power Sources 192, 644 (2009), doi: 10.1016/j.jpowsour.2009.03.017
  • [4] M. Thakur, M. Isaacson, S.L. Sinsabaugh, M.S. Wong, S.L. Biswal, J. Power Sources 205, 426 (2012), doi: 10.1016/j.jpowsour.2012.01.058
  • [5] B. Bang, M.H. Kim, H.S. Moon, Y.K. Lee, J.W. Park, J. Power Sources 156, 604 (2006), doi: 10.1016/j.jpowsour.2005.05.096
  • [6] B. Peng, F. Cheng, Z. Tao, J. Chen, J. Chem. Phys. 133, (2010), doi: 10.1063/1.3462998
  • [7] Z. Du, S. Zhang, T. Jiang, R. Lin, J. Zhao, Electrochimica Acta 74, 222 (2012), doi: 10.1016/j.electacta.2012.04.052
  • [8] L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, J. Appl. Electrochem 39, 1157 (2009), doi: 10.1007/s10800-008-9774-1
  • [9] V.A. Krivchenko, D.M. Itkis, S.A. Evlashin, D.A. Semenenko, E.A. Goodilin, A.T. Rakhimov, A.S. Stepanov, N.V. Suetin, A.A. Pilevsky, P.V. Voronin, Carbon 50, 1438 (2012), doi: 10.1016/j.carbon.2011.10.042
  • [10] D.M. Chipara, A.C. Chipara, M. Chipara, Spectroscopy 26, 2 (10)
  • [11] M. Thakura, M. Isaacson, S. L. Sinsabaugh, M.S. Wonga, S.L. Biswala, Journal of Power Sources 205, 426 (2012), doi: 10.1016/j.jpowsour.2012.01.058
  • [12] L. Yue, H. Zhong, L. Zhanga, Electrochim. Acta 76, 326 (2012), doi: 10.1016/j.electacta.2012.05.038
  • [13] G. Zhao, Y. Meng, N. Zhang, K. Sun, Mater. Lett. 76, 55 (2012), doi: 10.1016/j.matlet.2012.02.064
  • [14] X. Shen, D. Mu, S. Chen, B. Xu, B. Wu, F. Wu, J. Alloy. Compd. 552, 60 (2013), doi: 10.1016/j.jallcom.2012.10.094
  • [15] B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, J. Power Sources 196, 2889 (2011), doi: 10.1016/j.jpowsour.2010.10.081

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4054kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.