PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1019-1022
Article title

Cr and V Substitution in the LiMn₂O₄Spinel Positive Electrode Li-Ion Batteries

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, LiCr_{0.2}V_{0.4}Mn_{1.4}O₄ cathode active electrode materials were produced via a facile sol-gel method at 800°C. The surfaces of the LiCr_{0.2}V_{0.4}Mn_{1.4}O₄ cathode active electrode materials were then coated with Cu in order to increase the conductivity and suppress the manganese ion dissolution into the electrolyte. The structure and electrochemical properties of the obtained Cr and V substituted LiMn₂O₄ powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge- discharge test and electrochemical impedance spectroscopy (EIS). The improvement in the cycling performances attributed to stabilization of spinel structure by bication ion substation and Cu coating on the spinel particles. EIS analysis confirmed that bication doping and conductive Cu coating contributed stability of the spinel electrodes and provided stable electrolyte/electrode interface due to the suppression of electrolyte decomposition
Keywords
EN
Contributors
author
  • Sakarya University, Dept. of Environmental Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
  • Sakarya University, Metallurgy and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
  • Sakarya University, Metallurgy and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
  • Sakarya University, Metallurgy and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
author
  • Sakarya University, Metallurgy and Materials Engineering, Esentepe Campus, 54187 Sakarya, Turkey
References
  • [1] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, J. Power Sources 185, 501 (2008), doi: 10.1016/j.jpowsour.2008.06.074
  • [2] W. Xu, A. Yuan, L. Tian, Y. Wang, J. Appl. Electrochem. 41, 453 (2011), doi: 10.1007/s10800-011-0255-6
  • [3] H.B. Sun, Y.G. Chen, C.H. Xu, D. Zhu, L.H. Huang, J. Solid State Electrochem. 16, 1247 (2012), doi: 10.1007/s10008-011-1514-5
  • [4] C. Wang, S. Lu, S. Kan, J. Pang, W. Jin, X. Zhang, J. Power Sources 189, 607 (2009), doi: 10.1016/j.jpowsour.2008.09.104
  • [5] Y. Kim, J. Lim, S. Kang, Inter. J. Quantum Chemistry 113, 148 (2013), doi: 10.1002/qua.24314
  • [6] N. Jayaprakash, N. Kalaiselvi, G. Babu, D. Bhuvaneswari, J. Solid State Electrochem. 15, 1243 (2011), doi: 10.1007/s10008-010-1194-6
  • [7] M.O. Guler, A. Akbulut, T. Cetinkaya, M. Uysal, H. Akbulut, Int. J. Hydrogen Energy 39, 21447 (2014), doi: 10.1016/j.ijhydene.2014.04.107
  • [8] D. Ke, Y. Fei, H. Guorong, D.P. Zhong, C. Yanbing, S.R. Kwang, J. Power Sources 244, 29 (2013), doi: 10.1016/j.jpowsour.2013.04.152
  • [9] A. Mohamed, M.A. Jose, S. Ismael, M.R. Jose, J. Power Sources 196, 10222 (2011), doi: 10.1016/j.jpowsour.2011.08.069
  • [10] M.T. Rajive, K.K.M. Anil, P.B. Anand, S. Jayalekshmi, J. Physics and Chemistry of Solids 72, 1251 (2011), doi: 10.1016/j.jpcs.2011.07.018
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n4042kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.