Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 976-978

Article title

The Quality Factor in 2D Anisotropic Photonic Crystal Cavity

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work focuses on the study of the influence of geometrical parameters on the quality factor of a cavity H1, realized with one missing hole in the center. For obtaining the H1 characteristics and the band structure of the photonic crystal, the finite difference time domain (FDTD) method, which is based on solving Maxwell's equations in a spatially and temporally discretized domain, and plane wave expansion (PWE) method, which is a resolution method of Maxwell equations in the frequency domain, were used respectively. In this method, one simulates a space of theoretically infinite extent with a finite computational cell. The quality factor increases until a maximum value equal 1.23×10⁶ for a filling factor r/a=0.44, and then decreases to a value of 3.39×10⁵ for a filling factor r/a=0.47.

Keywords

EN

Contributors

  • Department of Electronics, University Mohamed Boudiaf of M'sila BP.166, Route Ichebilia, M'sila 28000 Algeria
author
  • Department of Electronics, University Mohamed Boudiaf of M'sila BP.166, Route Ichebilia, M'sila 28000 Algeria

References

  • [1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987), doi: 10.1103/PhysRevLett.58.2059
  • [2] S. John, Phys. Rev. Lett. 58, 2486 (1987), doi: 10.1103/PhysRevLett.58.2486
  • [3] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, Princeton Univ. Press, 1995
  • [4] J. Dahdah, M.P. Bernal, N.G Courjal, G. Ulliac, F. Baida , J. Appl. Phys. 110, 074318 (2011), doi: 10.1063/1.3647770
  • [5] O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O'Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999), doi: 10.1126/science.284.5421.1819
  • [6] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev. Lett. 80, 960 (1998), doi: 10.1103/PhysRevLett.80.960
  • [7] M. Imada, S. Noda, A. Chutinan, M. Mochizuki, T. Tanaka, IEEE J. Lightwave Technol. 20, 873 (2002), doi: 10.1109/JLT.2002.1007943
  • [8] A.R.A. Chalcrafta, S. Lam, D. O'Brien, T.F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M.S. Skolnick, A.M. Fox, D.M. Whittaker, H.-Y. Liu, M. Hopkinson, Appl. Phys. Lett. 90, 241117 (2007), doi: 10.1063/1.2748310
  • [9] J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, Phys. Rev. E 65, 016608 (2001), doi: 10.1103/PhysRevE.65.016608
  • [10] A. Benmerkhi, M. Bouchmat, T. Bouchmat, Optik 124, 5719 (2013), doi: 10.1016/j.ijleo.2013.04.028
  • [11] O. Bouleghlimat, A. Hocini, Phys. Scr. 89, 105502 (2014), doi: 10.1088/0031-8949/89/10/105502
  • [12] S. Guo, S. Albin, Optics Express 11, 167 (2003), doi: 10.1364/OE.11.000167
  • [13] C.Y. Liu, Phys. Lett. A 373, 3061 (2009), doi: 10.1016/j.physleta.2009.06.039
  • [14] The FDTD simulations were carried out with Fullwave commercial software by RSoft design group

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4029kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.