Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 914-916

Article title

The Wavefunctions and Energy Eigenvalues of the Schrodinger Equation for Different Potentials Due to the Virial Theorem

Content

Title variants

Languages of publication

EN

Abstracts

EN
The derivation of the virial theorem is presented both in classical and quantum mechanical approach. The kinetic energy and potential energy of the mechanical energy is converted to each other due to the virial theorem. Some of the different potentials are considered. For some of these potentials, the wavefunctions and energy eigenvalues of the Schrödinger Equation are derived.

Keywords

Contributors

author
  • Department of Physics, Bingol University, Bingol, Turkey
  • Department of Physics, Bingol University, Bingol, Turkey

References

  • [1] D. Kuić, Int. J. Theor. Phys. 52, 1221 (2013), doi: 10.1007/s10773-012-1438-6
  • [2] J.D. Stokes, H.P. Dahal, A.V. Balatsky, K.S. Bedell, Phil. Mag. Lett. 93, 672 (2013), doi: 10.1080/09500839.2013.838006
  • [3] H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Inc., Reading (1959)
  • [4] S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems, Thomson Learning, Belmont (2004)
  • [5] H. Arslan, Appl. Math. 4, 688 (2013), doi: 10.4236/am.2013.44094
  • [6] B.Y. Al-Khasawneh, MSc. Thesis, Yarmouk University, Irbid, 6 (2010)
  • [7] T. Nadareishvili, A. Khelashvili, arXiv preprint arXiv: 0907.1824 (2009)
  • [8] R. Gurtler, D. Hestenes, J. Math. Phys. 16, 573 (2008), doi: 10.1063/1.522555
  • [9] W. Namgung, J. Korean Phys. Soc. 32, 647 (1998)
  • [10] J.N. Bahcall, Phys. Rev. 124, 923 (1961), doi: 10.1103/PhysRev.124.923
  • [11] Z. Ru-Zeng,W. Yu-Hua, Q. Jin Chinese Phys. 11, 1193 (2002), doi: 10.1088/1009-1963/11/11/318
  • [12] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 8, 389 (1974), doi: 10.1002/qua.560080842
  • [13] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 9, 425 (1975), doi: 10.1002/qua.560090852
  • [14] G. Kalman, V. Canuto, B. Datta, Phys. Rev. D 13, 3493 (1976), doi: 10.1103/PhysRevD.13.3493
  • [15] F. Rosicky, F. Mark, J. Phys. B: At. Mol. Phys. 8, 2581 (1975), doi: 10.1088/0022-3700/8/16/014
  • [16] A. Barshalom, J. Oreg, High Energy Density Physics 5, 196 (2009), doi: 10.1016/j.hedp.2009.05.008
  • [17] H. Arslan, J. Mod. Phys. 4, 559 (2013), doi: 10.4236/jmp.2013.44078
  • [18] H. Arslan, Open Journal of Microphysics 1, 28 (2011), doi: 10.4236/ojm.2011.12005
  • [19] W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990), doi: 10.1142/S0217732390002870
  • [20] V.M. Shabaev, arXiv preprint arXiv: physics/0211087 (2002)
  • [21] C. Semay, J. Math. Phys. 34, 1791 (1993), doi: 10.1063/1.530417
  • [22] N.H. March, Phys. Rev. 92, 481 (1953), doi: 10.1103/PhysRev.92.481
  • [23] M.E. Rose, T.A. Welton, Phys. Rev. 86, 432 (1952), doi: 10.1103/PhysRev.86.432.2
  • [24] A.A. Balinsky, W.D. Evans, Lett. Math. Phys. 44, 233 (1998), doi: 10.1023/A:1007425400991

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4011kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.