PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 914-916
Article title

The Wavefunctions and Energy Eigenvalues of the Schrodinger Equation for Different Potentials Due to the Virial Theorem

Content
Title variants
Languages of publication
EN
Abstracts
EN
The derivation of the virial theorem is presented both in classical and quantum mechanical approach. The kinetic energy and potential energy of the mechanical energy is converted to each other due to the virial theorem. Some of the different potentials are considered. For some of these potentials, the wavefunctions and energy eigenvalues of the Schrödinger Equation are derived.
Keywords
Contributors
author
  • Department of Physics, Bingol University, Bingol, Turkey
  • Department of Physics, Bingol University, Bingol, Turkey
References
  • [1] D. Kuić, Int. J. Theor. Phys. 52, 1221 (2013), doi: 10.1007/s10773-012-1438-6
  • [2] J.D. Stokes, H.P. Dahal, A.V. Balatsky, K.S. Bedell, Phil. Mag. Lett. 93, 672 (2013), doi: 10.1080/09500839.2013.838006
  • [3] H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Inc., Reading (1959)
  • [4] S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems, Thomson Learning, Belmont (2004)
  • [5] H. Arslan, Appl. Math. 4, 688 (2013), doi: 10.4236/am.2013.44094
  • [6] B.Y. Al-Khasawneh, MSc. Thesis, Yarmouk University, Irbid, 6 (2010)
  • [7] T. Nadareishvili, A. Khelashvili, arXiv preprint arXiv: 0907.1824 (2009)
  • [8] R. Gurtler, D. Hestenes, J. Math. Phys. 16, 573 (2008), doi: 10.1063/1.522555
  • [9] W. Namgung, J. Korean Phys. Soc. 32, 647 (1998)
  • [10] J.N. Bahcall, Phys. Rev. 124, 923 (1961), doi: 10.1103/PhysRev.124.923
  • [11] Z. Ru-Zeng,W. Yu-Hua, Q. Jin Chinese Phys. 11, 1193 (2002), doi: 10.1088/1009-1963/11/11/318
  • [12] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 8, 389 (1974), doi: 10.1002/qua.560080842
  • [13] E. Weislinger, G. Olivier, Int. J. Quantum Chem. 9, 425 (1975), doi: 10.1002/qua.560090852
  • [14] G. Kalman, V. Canuto, B. Datta, Phys. Rev. D 13, 3493 (1976), doi: 10.1103/PhysRevD.13.3493
  • [15] F. Rosicky, F. Mark, J. Phys. B: At. Mol. Phys. 8, 2581 (1975), doi: 10.1088/0022-3700/8/16/014
  • [16] A. Barshalom, J. Oreg, High Energy Density Physics 5, 196 (2009), doi: 10.1016/j.hedp.2009.05.008
  • [17] H. Arslan, J. Mod. Phys. 4, 559 (2013), doi: 10.4236/jmp.2013.44078
  • [18] H. Arslan, Open Journal of Microphysics 1, 28 (2011), doi: 10.4236/ojm.2011.12005
  • [19] W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990), doi: 10.1142/S0217732390002870
  • [20] V.M. Shabaev, arXiv preprint arXiv: physics/0211087 (2002)
  • [21] C. Semay, J. Math. Phys. 34, 1791 (1993), doi: 10.1063/1.530417
  • [22] N.H. March, Phys. Rev. 92, 481 (1953), doi: 10.1103/PhysRev.92.481
  • [23] M.E. Rose, T.A. Welton, Phys. Rev. 86, 432 (1952), doi: 10.1103/PhysRev.86.432.2
  • [24] A.A. Balinsky, W.D. Evans, Lett. Math. Phys. 44, 233 (1998), doi: 10.1023/A:1007425400991
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n4011kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.