PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-113-A-117
Article title

Route to Chaos in Generalized Logistic Map

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We postulate a generalization of well-known logistic map to open the possibility of optimization the modelling process of the population evolution. For proposed generalized equation we illustrate the character of the transition from regularity to chaos for the whole spectrum of model parameters. As an example we consider specific cases for both periodic and chaotic regime. We focus on the character of the corresponding bifurcation sequence and on the quantitative nature of the resulting attractor as well as its universal attribute (Feigenbaum constant).
Keywords
EN
Contributors
author
  • Faculty of Mathematics and Natural Sciences, University of Rzeszów, PL-35959 Rzeszów, Poland
author
  • Faculty of Mathematics and Natural Sciences, University of Rzeszów, PL-35959 Rzeszów, Poland
References
  • [1] Pierre-François Verhulst, Notice sur la loi que la population poursuit dans son accroissement, in Correspondance mathématique et physique, 1838, p. 113
  • [2] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 1993
  • [3] H.G. Schuster, Deterministic chaos: an introduction, Weinheim 1988
  • [4] R. Rak, Ph.D. Thesis, University of Rzeszów (2003)
  • [5] N.K. Pareeka, V. Patidara, K.K. Sud, Image Vision Comput. 24, 926 (2006), doi: 10.1016/j.imavis.2006.02.021
  • [6] A. Ferretti, N.K. Rahman, Chem. Phys. 119, 275 (1988), doi: 10.1016/0301-0104(88)87190-8
  • [7] C. Pellicer-Lostao, R. López-Ruiz J. Computational Science 1, 24 (2010), doi: 10.1016/j.jocs.2010.03.005
  • [8] M. Andrecut, Int. J. Modern Phys. B 12, 921 (1998), doi: 10.1142/S021797929800051
  • [9] M.J. Feigenbaum, NewYork. Acad. Sci. 357, 330 (1980), doi: 10.1111/j.1749-6632.1980.tb29699.x
  • [10] M.J. Feigenbaum, Stat. Phys. 19, 25 (1978), doi: 10.1007/BF01020332
  • [11] C.J. Thompson, J.B. McGuire, J. Stat. Phys. 51, 991 (1988), doi: 10.1007/BF01014896
  • [12] J.W. Stephenson, Y. Wang, Appl. Math. Notes 15, 68 (1990)
  • [13] J. Smital, On Functions and Functional Equations, IOP Publishing Ltd, Bristol 1998
  • [14] T. Li, J.A. Yorke, Amer. Math. 82, 985 (1975), doi: 10.2307/2318254
  • [15] A.M. Lyapunov, Ann. Math. Study, Vol. 17, Princeton Univ. Press, Princeton 1949
  • [16] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985), doi: 10.1016/0167-2789(85)90011-9
  • [17] M.A. van Wyk, W.H. Steeb, Chaos in Electronics, Kluwer Academic Publishing, Boston 1997
  • [18] S.H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Addison-Wesley, New York, 1994
  • [19] A.H. Nayfeh, B. Balachandran, Applied nonlinear dynamics: analytical, computational, and experimental methods, John Wiley and Sons, New York 1995
  • [20] P. Bryant, R. Brown, H. Abarbanel, Phys. Rev. Lett. 65, 1523 (1990), doi: 10.1103/PhysRevLett.65.1523
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n3a20kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.