PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-78-A-85
Article title

Balance in the Turbulent World of Economy

Content
Title variants
Languages of publication
EN
Abstracts
EN
The stock market balance can be presented as a result of mutual effect of the supply and demand on the market. This creates high-frequency dynamics of prices for shares, what in turn leads to the appearance of the three-dimensional rotary trajectories of the market. The 3-D space is a Cartesian product: prices, volumes, and time. In this space whirling vectors form rotary-spiral trajectories and, they in turn, determine in the appropriate time periods side surfaces of solids of revolution, which rotate as well. Perpendicular projections of rotary trajectories on planes with standing out time axis cause that economic rotary phenomena are depicted on the mentioned planes by means of flat zigzags. Double rotating of economic vectors resembles precession movement. This is the precession movement which guarantees oscillating-rotating vectors around the hypothetical line of economic balance. Economic vectors are always set in rotary motion mainly by stimulating the vectors of demand and supply. Dynamically changing volumes of the mentioned forces cause that permanent state of economic balance practically do not exist in market reality. In the modified by the authors cobwebbed model states of fragile balance are explained by means of precession and accompanying it nutation. The rotary movement occurs universally in our world. The effects of vortexes from the world of nature are extremely quickly reflected in changing in chaotic way forces of demand and supply which in turn are the main generators of economic vortexes. Then the relationship is unambiguous and can be expressed by a short general statement claiming that vortexes generate vortexes regardless of the environment in which they occur. The resemblance between the rotary trajectories observed in hydrodynamics and the stock market rotary-spiral trajectory was the inspiration of the work for creating the econophysical analogue of the so-called stock market Reynolds number (R_{e}). The academic community has long sought a description of the phenomenon of turbulence in financial markets, and this article is an attempt to face this challenge. The original idea behind developing an economic equivalent of the Reynolds number was that market vectors of volumes, prices and time components can be treated as particles of a stream of liquid flowing through a pipe of a given cross-section. The Reynolds number, defined in this way, can be applied in research into the dynamics of stock exchange indices and, in particular, for the development of short-term warning forecasts. Additionally, it can be treated as a coefficient confirming (or rejecting) long-term stock market predictions.
Keywords
Contributors
author
  • Institute of Economics, Polish Academy of Sciences, pl. Defilad 1, PL-00901 Warsaw, Poland
author
  • Department of Mathematics and Cybernetics, Wroclaw University of Economics, Komandorska Street 118/120, PL-53345 Wrocław, Poland
References
  • [1] H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, in: Oeuvres de Henri Poincaré, Vol. VII: Masses fluides en rotation. Principes de mécanique analytique. Problème des trois corps, Gauthier-Villars, Paris 1952, p. 262
  • [2] L. Bachelier, Théorie de la spéculation, in: Annales scientifiques de l'Ecole Normale Supérieure, 3e série, Vol. 17, Gauthier-Villars, Paris 1900, p. 21
  • [3] A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed., McGraw-Hill, Boston 2002
  • [4] M. Smoluchowski, in: Pisma Marjana Smoluchowskiego z polecenia Polskiej Akademii Umiejętności zgromadzone i wydane przez Władysława Natansona, Vol. 2, Drukarnia Uniwersytetu Jegiellońskiego, Kraków 1927, p. 268
  • [5] J. Barrow-Green, Poincaré and the Three Body Problem, American Mathematical Society, Providence 1997
  • [6] J. Mawhin, Henri Poincaré, Notices Amer. Math. Soc. 52, 1036 (2005)
  • [7] M. Tempczyk, Teoria chaosu dla odważnych, Wydawnictwo Naukowe PWN, Warszawa 2002
  • [8] H. Lamb, Hydrodynamics, 6th ed., Cambridge University Press, Cambridge 1993
  • [9] O. Reynolds, Papers on Mechanical and Physical Subjects, Reprinted from Various Transactions and Journals, Vol. 1: 1869-1882, Cambridge University Press, Cambridge 1900
  • [10] O. Reynolds, Papers on Mechanical and Physical Subjects, Reprinted from Various Transactions and Journals, Vol. 2: 1881-1900, Cambridge University Press, Cambridge 1901
  • [11] O. Reynolds, Papers on Mechanical and Physical Subjects, Vol. 3: The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge 1903
  • [12] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Revised 2nd Ed., John Wiley & Sons, New York 2007
  • [13] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Martinus Nijhoff Publishers, The Hague 1983, doi: 10.1007/978-94-009-8352-6
  • [14] B.M. Jaworski, A.A. Piński, Elementy fizyki, Vol. 1: Ruch i siły; prawa zachowania; kinetyczno-cząsteczkowa teoria gazów; siły molekularne i stany skupienia materii, wyd. 2, Państwowe Wydawnictwo Naukowe, Warszawa 1979
  • [15] R.N. Mantegna, H.E. Stanley, Ekonofizyka. Wprowadzenie, Wydawnictwo Naukowe PWN, Warszawa 2001
  • [16] R. Antoniewicz, Metoda najmniejszych kwadratów dla zależności niejawnych i jej zastosowania w ekonomii, Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 445, Akademia Ekonomiczna im. O. Langego we Wrocławiu, Wrocław 1988
  • [17] J. Juzwiszyn, Wiry ekonomiczne i fale R.N. Elliotta, Katedra Matematyki i Cybernetyki, Wydział Zarządzania i Informatyki, Akademia Ekonomiczna im. Oskara Langego, Wrocław 2006
  • [18] A. Jakimowicz, Źródła niestabilności struktur rynkowych, Seria: Współczesna Ekonomia, Wydawnictwo Naukowe PWN, Warszawa 2010
  • [19] J. Juzwiszyn, O obrotach sfer finansowych, in: Ekonomia Matematyczna, No. 5, Wydawnictwo Akademii Ekonomicznej im. O. Langego we Wrocławiu, Wrocław 2001, p. 133
  • [20] A. Smoluk, Normy, prawa nauki i fale Elliotta, in: Ekonomia Matematyczna, No. 6, Wydawnictwo Akademii Ekonomicznej im. O. Langego we Wrocławiu, Wrocław 2002, p. 11
  • [21] A. Smoluk, Mathematical Economics 9, 31 (2005)
  • [22] F. Leja, Geometria analityczna, wyd. 3, PWN, Warszawa 1961
  • [23] A. Jakimowicz, J. Juzwiszyn, Acta Phys. Pol. A 121, B-54 (2012)
  • [24] R.P. Feynman, R.B. Leighton, M. Sands, Feynmana wykłady z fizyki, Vol. 1.1, 1.2, Wydawnictwo Naukowe PWN, Warszawa 2014
  • [25] J. Juzwiszyn, Mathematical Economics 6, 49 (2010)
  • [26] J. Juzwiszyn, Mathematical Economics 2, 75 (2005)
  • [27] J. Tinbergen, Zeitschrift für Nationalökonomie 1 669 (1930), doi: 10.1007/BF01318500
  • [28] U. Ricci, Zeitschrift für Nationalökonomie 1, 649 (1930), doi: 10.1007/BF01318499
  • [29] H. Schultz, Der Sinn der statistischen Nachfragekurven, in: Veröffentlichungen der Frankfurter Gesellschaft für Konjunkturforschung, Heft 10, Ed. E. Altschul, Kurt Schroeder Verlag, Bonn 1930
  • [30] A. Hanau, Die Prognose der Schweinepreise, in: Vierteljahrshefte zur Konjunkturforschung herausgegeben vom Institut für Konjunkturforschung, Sonderheft 7, Verlag von Reimar Hobbing, Berlin 1928, p. 4
  • [31] L. Walras, Éléments d'économie politique pure, ou Théorie de la richesse sociale, Éd. définitive, revue et augmentée par l'auteur, R. Pichon et R. Durand-Auzias, Paris 1926
  • [32] A. Marshall, Principles of Economics. An Introductory Volume, Macmillan, London 1947
  • [33] R.G.D. Allen, Ekonomia matematyczna, PWN, Warszawa 1961
  • [34] D. Glycopantis, N.C. Yannelis, (Eds.), Differential Information Economies, Springer-Verlag, Berlin 2005, doi: 10.1007/b138401
  • [35] L. von Bertalanffy, Ogólna teoria systemów. Podstawy, rozwój, zastosowania, PWN, Warszawa 1984
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n3a14kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.