Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-70-A-74

Article title

Numerical Analysis of Two Coupled Kaldor-Kalecki Models with Delay

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper is concerned with two coupled Kaldor-Kalecki models of business cycles with delays in both the gross product and the capital stock. We consider two types of investment functions that lead to different behavior of the system. We introduce the model with unidirectional coupling to investigate the influence of a global economy (like the European Union) on a local economy (like Poland). We present detailed results of numerical analysis.

Keywords

Contributors

  • Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland
author
  • Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland
author
  • Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland

References

  • [1] J.A. Schumpeter, Business Cycles, A Theoretical, Historical, and Statistical Analysis of the Capitalist Process, McGraw-Hill Book Company, New York 1939
  • [2] Kyun Kim, Equilibrium Business Cycle Theory from Historical Perspective, Cambridge University Press, Cambridge 1988
  • [3] Victor Zarnowitz, Business Cycles: Theory, History, Indicators, and Forecasting, The Chicago University Press, Chicago 1996
  • [4] M. Kalecki, Econometrica 3, 327 (1935), doi: 10.2307/1905325
  • [5] R.G.D. Allen, Ekonomia matematyczna, Państwowe Wydawnictwo Naukowe PWN, Warszawa 1961
  • [6] A. Jakimowicz, Od Keynesa do teorii chaosu. Ewolucja teorii wahań koniunkturalnych, Państwowe Wydawnictwo Naukowe PWN, Warszawa 2005
  • [7] N. Kaldor, Econ. J. 50, 78 (1940), doi: 10.2307/2225740
  • [8] H.-W. Lorenz, Non-Linear Dynamic Economics and Chaotic Motion, Springer-Verlag, Berlin 1989
  • [9] A. Krawiec, M. Szydłowski, Ann. Oper. Res. 89, 89 (1999), doi: 10.1023/A:1018948328487
  • [10] X.P. Wu, L. Wang, IMA J. Appl. Math. 79, 326 (2014)
  • [11] A. Kaddar, H. Talibi Alaoui, Nonlinear Anal. Model. Control 14, 463 (2009)
  • [12] A. Krawiec, M. Szydłowski, Computation in Economics, Finance and Engineering: Economics Systems, Proceedings of Conference on Computation in Economics, Finance and Engineering, Elsevier, 2000, p. 391
  • [13] A. Krawiec, M. Szydłowski, J. Nonlinear Math. Phys. 8, 266 (2001), doi: 10.2991/jnmp.2001.8.s.46
  • [14] L. Wang, X.P. Wu, E. J. Qualitative Theory of Diff. Equ. 27, 1 (2009)
  • [15] X.P. Wu, Nonlinear Anal. Model. Control 18, 359 (2013)
  • [16] X.P. Wu, Nonlinear Anal. Real World Appl. 13, 736 (2012), doi: 10.1016/j.nonrwa.2011.08.013
  • [17] A. Maccari, Nonlinear Dynam. 26, 211 (2001)
  • [18] D.V. Ramana Reddy, A. Sen, G.L. Johnston, Physica D 144, 335 (2000), doi: 10.1016/S0167-2789(00)00086-5

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n3a12kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.