Journal
Article title
Title variants
Languages of publication
Abstracts
This paper is concerned with two coupled Kaldor-Kalecki models of business cycles with delays in both the gross product and the capital stock. We consider two types of investment functions that lead to different behavior of the system. We introduce the model with unidirectional coupling to investigate the influence of a global economy (like the European Union) on a local economy (like Poland). We present detailed results of numerical analysis.
Discipline
- 88.05.Lg: Economic issues; sustainability; cost trends
- 05.45.-a: Nonlinear dynamics and chaos(see also section 45 Classical mechanics of discrete systems; for chaos in fluid dynamics, see 47.52.+j; for chaos in superconductivity, see 74.40.De)
- 02.60.Lj: Ordinary and partial differential equations; boundary value problems
- 89.65.Gh: Economics; econophysics, financial markets, business and management(for economic issues regarding production and use of renewable energy, see 88.05.Lg)
- 05.45.Xt: Synchronization; coupled oscillators
Journal
Year
Volume
Issue
Pages
A-70-A-74
Physical description
Dates
published
2015-03
Contributors
author
- Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland
author
- Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland
author
- Department of Informatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland
References
- [1] J.A. Schumpeter, Business Cycles, A Theoretical, Historical, and Statistical Analysis of the Capitalist Process, McGraw-Hill Book Company, New York 1939
- [2] Kyun Kim, Equilibrium Business Cycle Theory from Historical Perspective, Cambridge University Press, Cambridge 1988
- [3] Victor Zarnowitz, Business Cycles: Theory, History, Indicators, and Forecasting, The Chicago University Press, Chicago 1996
- [4] M. Kalecki, Econometrica 3, 327 (1935), doi: 10.2307/1905325
- [5] R.G.D. Allen, Ekonomia matematyczna, Państwowe Wydawnictwo Naukowe PWN, Warszawa 1961
- [6] A. Jakimowicz, Od Keynesa do teorii chaosu. Ewolucja teorii wahań koniunkturalnych, Państwowe Wydawnictwo Naukowe PWN, Warszawa 2005
- [7] N. Kaldor, Econ. J. 50, 78 (1940), doi: 10.2307/2225740
- [8] H.-W. Lorenz, Non-Linear Dynamic Economics and Chaotic Motion, Springer-Verlag, Berlin 1989
- [9] A. Krawiec, M. Szydłowski, Ann. Oper. Res. 89, 89 (1999), doi: 10.1023/A:1018948328487
- [10] X.P. Wu, L. Wang, IMA J. Appl. Math. 79, 326 (2014)
- [11] A. Kaddar, H. Talibi Alaoui, Nonlinear Anal. Model. Control 14, 463 (2009)
- [12] A. Krawiec, M. Szydłowski, Computation in Economics, Finance and Engineering: Economics Systems, Proceedings of Conference on Computation in Economics, Finance and Engineering, Elsevier, 2000, p. 391
- [13] A. Krawiec, M. Szydłowski, J. Nonlinear Math. Phys. 8, 266 (2001), doi: 10.2991/jnmp.2001.8.s.46
- [14] L. Wang, X.P. Wu, E. J. Qualitative Theory of Diff. Equ. 27, 1 (2009)
- [15] X.P. Wu, Nonlinear Anal. Model. Control 18, 359 (2013)
- [16] X.P. Wu, Nonlinear Anal. Real World Appl. 13, 736 (2012), doi: 10.1016/j.nonrwa.2011.08.013
- [17] A. Maccari, Nonlinear Dynam. 26, 211 (2001)
- [18] D.V. Ramana Reddy, A. Sen, G.L. Johnston, Physica D 144, 335 (2000), doi: 10.1016/S0167-2789(00)00086-5
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n3a12kz