Title variants
Languages of publication
Abstracts
We make the comparative study of scaling range properties for detrended fluctuation analysis (DFA), detrended moving average analysis (DMA) and recently proposed new technique called modified detrended moving average analysis (MDMA). Basic properties of scaling ranges for these techniques are reviewed. The efficiency and exactness of all three methods towards proper determination of scaling Hurst exponent H is discussed, particularly for short series of uncorrelated and persistent data.
Discipline
Journal
Year
Volume
Issue
Pages
A-59-A-65
Physical description
Dates
published
2015-03
Contributors
author
- Faculty of Physics and Astronomy, University of Wrocław, Econophysics and Time Series Analysis Group (ETSA), pl. M. Borna 9, PL-50204 Wrocław, Poland
author
- Faculty of Physics and Astronomy, University of Wrocław, Econophysics and Time Series Analysis Group (ETSA), pl. M. Borna 9, PL-50204 Wrocław, Poland
References
- [1] Y.-H. Shao, G.-F. Gu, Z.-Q. Jiang, W.-X. Zhou, D. Sornette, Scientific Reports 2, 835 (2012), doi: 10.1038/srep00835
- [2] R.M. Bryce, K.B. Sprague, Scientific Reports 2, 315 (2012), doi: 10.1038/srep00315
- [3] L. Xu, P.Ch. Ivanov, K. Hu, Z. Chen, A. Carbone, H.E. Stanley, Phys. Rev. E 71, 051101 (2005), doi: 10.1103/PhysRevE.71.051101
- [4] S. Michalski, Physica A 387, 217 (2008), doi: 10.1016/j.physa.2007.08.018
- [5] A. Bashan, R. Bartsch, J.W. Kantelhardt, S. Havlin, Physica A 387, 5080 (2008), doi: 10.1016/j.physa.2008.04.023
- [6] R. Weron, Physica A 312, 285 (2002), doi: 10.1016/s0378-4371(02)00961-5
- [7] M. Couillard, M. Davison, Physica A 348, 404 (2005), doi: 10.1016/j.physa.2004.09.035
- [8] M.S. Taqqu, V. Teverovsky, W. Willinger, Fractals 3, 785, (1995), doi: 10.1142/s0218348x95000692
- [9] B.B. Mandelbrot The Fractal Geometry of Nature, W.H. Freeman, New York 1982
- [10] H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951)
- [11] B.B. Mandelbrot, J.R. Wallis, Water Resour. Res. 5, 321 (1969), doi: 10.1029/wr005i002p00321
- [12] J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Physica A 295, 441 (2001), doi: 10.1016/s0378-4371(01)00144-3
- [13] C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5, 82 (1995), doi: 10.1063/1.166141
- [14] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger, Phys. Rev. E 49, 1685 (1994), doi: 10.1103/physreve.49.1685
- [15] E. Alessio, A. Carbone, G. Castelli, V. Frappietro, Eur. Phys. J. B 27, 197 (2002), doi: 10.1007/s10051-002-9020-2
- [16] A. Carbone, G. Castelli, H.E. Stanley, Phys. Rev. E 69, 026105 (2004), doi: 10.1103/physreve.69.026105
- [17] A. Carbone, H.E. Stanley, Physica A 340, 544 (2004), doi: 10.1016/j.physa.2004.05.004
- [18] A. Carbone, G. Castelli, H.E. Stanley, Physica A 344, 267 (2004), doi: 10.1016/j.physa.2004.06.130
- [19] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002), doi: 10.1016/s0378-4371(02)01383-3
- [20] D. Grech, Z. Mazur, Phys. Rev. E 87, 052809 (2013), doi: 10.1103/physreve.87.052809
- [21] H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5445 (1996), doi: 10.1103/physreve.53.5445
- [22] D. Grech, G. Pamuła, Physica A 392, 5845 (2013), doi: 10.1016/j.physa.2013.07.045
- [23] D. Grech, Z. Mazur, Physica A 392, 2384 (2013), doi: 10.1016/j.physa.2013.01.049
- [24] P. Oświęcimka, S. Drożdż, J. Kwapień, A.Z. Górski, Acta Phys. Pol. A 123, 597 (2013), doi: 10.12693/APhysPolA.123.597
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n3a10kz