Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-59-A-65

Article title

Impact of Scaling Range on the Effectiveness of Detrending Methods

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We make the comparative study of scaling range properties for detrended fluctuation analysis (DFA), detrended moving average analysis (DMA) and recently proposed new technique called modified detrended moving average analysis (MDMA). Basic properties of scaling ranges for these techniques are reviewed. The efficiency and exactness of all three methods towards proper determination of scaling Hurst exponent H is discussed, particularly for short series of uncorrelated and persistent data.

Keywords

Contributors

author
  • Faculty of Physics and Astronomy, University of Wrocław, Econophysics and Time Series Analysis Group (ETSA), pl. M. Borna 9, PL-50204 Wrocław, Poland
author
  • Faculty of Physics and Astronomy, University of Wrocław, Econophysics and Time Series Analysis Group (ETSA), pl. M. Borna 9, PL-50204 Wrocław, Poland

References

  • [1] Y.-H. Shao, G.-F. Gu, Z.-Q. Jiang, W.-X. Zhou, D. Sornette, Scientific Reports 2, 835 (2012), doi: 10.1038/srep00835
  • [2] R.M. Bryce, K.B. Sprague, Scientific Reports 2, 315 (2012), doi: 10.1038/srep00315
  • [3] L. Xu, P.Ch. Ivanov, K. Hu, Z. Chen, A. Carbone, H.E. Stanley, Phys. Rev. E 71, 051101 (2005), doi: 10.1103/PhysRevE.71.051101
  • [4] S. Michalski, Physica A 387, 217 (2008), doi: 10.1016/j.physa.2007.08.018
  • [5] A. Bashan, R. Bartsch, J.W. Kantelhardt, S. Havlin, Physica A 387, 5080 (2008), doi: 10.1016/j.physa.2008.04.023
  • [6] R. Weron, Physica A 312, 285 (2002), doi: 10.1016/s0378-4371(02)00961-5
  • [7] M. Couillard, M. Davison, Physica A 348, 404 (2005), doi: 10.1016/j.physa.2004.09.035
  • [8] M.S. Taqqu, V. Teverovsky, W. Willinger, Fractals 3, 785, (1995), doi: 10.1142/s0218348x95000692
  • [9] B.B. Mandelbrot The Fractal Geometry of Nature, W.H. Freeman, New York 1982
  • [10] H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951)
  • [11] B.B. Mandelbrot, J.R. Wallis, Water Resour. Res. 5, 321 (1969), doi: 10.1029/wr005i002p00321
  • [12] J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Physica A 295, 441 (2001), doi: 10.1016/s0378-4371(01)00144-3
  • [13] C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5, 82 (1995), doi: 10.1063/1.166141
  • [14] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger, Phys. Rev. E 49, 1685 (1994), doi: 10.1103/physreve.49.1685
  • [15] E. Alessio, A. Carbone, G. Castelli, V. Frappietro, Eur. Phys. J. B 27, 197 (2002), doi: 10.1007/s10051-002-9020-2
  • [16] A. Carbone, G. Castelli, H.E. Stanley, Phys. Rev. E 69, 026105 (2004), doi: 10.1103/physreve.69.026105
  • [17] A. Carbone, H.E. Stanley, Physica A 340, 544 (2004), doi: 10.1016/j.physa.2004.05.004
  • [18] A. Carbone, G. Castelli, H.E. Stanley, Physica A 344, 267 (2004), doi: 10.1016/j.physa.2004.06.130
  • [19] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002), doi: 10.1016/s0378-4371(02)01383-3
  • [20] D. Grech, Z. Mazur, Phys. Rev. E 87, 052809 (2013), doi: 10.1103/physreve.87.052809
  • [21] H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5445 (1996), doi: 10.1103/physreve.53.5445
  • [22] D. Grech, G. Pamuła, Physica A 392, 5845 (2013), doi: 10.1016/j.physa.2013.07.045
  • [23] D. Grech, Z. Mazur, Physica A 392, 2384 (2013), doi: 10.1016/j.physa.2013.01.049
  • [24] P. Oświęcimka, S. Drożdż, J. Kwapień, A.Z. Górski, Acta Phys. Pol. A 123, 597 (2013), doi: 10.12693/APhysPolA.123.597

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n3a10kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.