PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-55-A-58
Article title

Majority-Vote Model on Scale-Free Hypergraphs

Content
Title variants
Languages of publication
EN
Abstracts
EN
Majority-vote models on scale-free hypergraphs are investigated by means of numerical simulations with different variants of system dynamics. Hypergraphs are generalisations of ordinary graphs in which higher order of social organisation is included by introducing hyperedges corresponding to social groups, connecting more than two nodes. In the models under study, opinions of agents (two-state spins) placed in nodes are updated according to a probabilistic rule with control parameter representing social noise. The probability of a single spin flip depends on the average opinion within only one social group (hyperedge) the agent belongs to. This introduces an intermediate level of social interactions, in contrast with the case of networks, where the opinion of an agent usually depends on the average opinion of all neighbours. In all cases under consideration a second-order phase transition to a state with an uniform opinion was found as a function of the social noise, with the critical value of the control parameter and the critical exponents depending on the hypergraph topology and details of the system dynamics (node or hyperedge update).
Keywords
Contributors
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00662 Warsaw, Poland
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00662 Warsaw, Poland
References
  • [1] M.J. Oliveira, J. Stat. Phys. 66, 273 (1992), doi: 10.1007/BF01060069
  • [2] C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009), doi: 10.1103/RevModPhys.81.591
  • [3] G. Grinstein, C. Jayaprakash, Yu He, Phys. Rev. Lett 55, 2527 (1985), doi: 10.1103/PhysRevLett.55.2527
  • [4] M.J. Oliveira, J.F.F. Mendes, M.A. Santos, J. Phys. A: Math. Gen. 26, 2317 (1993), doi: 10.1088/0305-4470/26/10/006
  • [5] A.L. Acuña-Lara, F. Sastre, Phys. Rev. E 86, 041123 (2012), doi: 10.1103/PhysRevE.86.041123
  • [6] Jae-Suk Yang, In-mook Kim, Wooseop Kwak, Phys. Rev. E 77, 051122 (2008), doi: 10.1103/PhysRevE.77.051122
  • [7] L.F.C. Pereira, F.G. Brady Moreira, Phys. Rev. E 71, 016123 (2005), doi: 10.1103/PhysRevE.71.016123
  • [8] F.W.S. Lima, A.O. Sousa, M.A. Sumuor, Physica A 387, 3503 (2008), doi: 10.1016/j.physa.2008.01.120
  • [9] P.R.A. Campos, V.M. de Oliveira, F.G. Brady Moreira, Phys. Rev. E 67, 026104 (2003), doi: 10.1103/PhysRevE.67.026104
  • [10] F.W.S. Lima, Int. J. Mod. Phys. C 17, 1257 (2006), doi: 10.1142/S0129183106008972
  • [11] F.W.S. Lima, Commun. Comput. Phys. 2, 358 (2007), doi: 10.4208/cicp.2007.v2.p358
  • [12] F.W.S. Lima, A. A. Moreira, A. D. Araújo, Phys. Rev. E 86, 056109 (2012), doi: 10.1103/PhysRevE.86.056109
  • [13] F.W.S. Lima, Cent. Eur. J. Phys. 12, 185 (2014), doi: 10.2478/s11534-014-0435-1
  • [14] S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014), doi: 10.1016/j.physrep.2014.07.001
  • [15] G. Ghoshal, V. Zlatić, G. Caldarelli, M.E.J. Newman, Phys. Rev. E 79, 066118 (2009), doi: 10.1103/PhysRevE.79.066118
  • [16] J.-W. Wang, L.-L. Rong, Q.-H. Deng, J.-Y. Zhang, Eur. Phys. J. B77, 493 (2010), doi: 10.1140/epjb/e2010-00297-8
  • [17] Hu Feng, Zhao Hai-Xing, He Jia-Bei, Li Fa-Xu, Li Shu-Ling, Zhang Zi-Ke, Acta Phys. Sin. 62, 198901 (2013), doi: 10.7498/aps.62.198901
  • [18] Zhaoyan Wua, Jinqiao Duan, Xinchu Fu, App. Math. Model. 38, 2961 (2014), doi: 10.1016/j.apm.2013.11.009
  • [19] Hyunsuk Hong, Meesoon Ha, Hyunggyu Park, Phys. Rev. Lett. 98, 258701 (2007), doi: 10.1103/PhysRevLett.98.258701
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n3a09kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.