Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3A | A-33-A-37

Article title

Mutual Information-Based Hierarchies on Warsaw Stock Exchange

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A popular method for network analysis of financial markets is a notable part of econophysics research. The networks created in such efforts are focused exclusively on linear correlations between stocks. While Pearson's correlation is the obvious starting point, it would be useful to look at its alternatives as to whether they provide improvements to this methodology, particularly given Pearson's correlation coefficient considers only a limited class of association patterns. We propose to use mutual information-based hierarchical networks, as mutual information is a natural generalisation of Pearson's correlation. We estimate mutual information using naive plug-in estimator as consistent bias is not harmful to this application, however other methods may also be used. We then transform the mutual information into an Euclidean metric and create minimal spanning trees and maximally filtered planar graphs. We apply this methodology to Warsaw Stock Exchange for years between 2000 and 2013, and comment on the differences with the standard methodology, as well as the structural changes on Warsaw Stock Exchange which the study reveals.

Keywords

Contributors

author
  • Cracow University of Economics, Rakowicka 27, 31-510 Kraków, Poland

References

  • [1] P.A. Samuelson, Ind. Manag. Rev. 6, 41 (1965)
  • [2] B.B. Mandelbrot, J. Bus. 36, 394 (1963), doi: 10.1086/294632
  • [3] L.P. Kadanoff, Simulation 16, 261 (1971), doi: 10.1177/003754977101600603
  • [4] R.N. Mantegna, Physica A 179, 232 (1991), doi: 10.1016/0378-4371(91)90061-G
  • [5] R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999), doi: 10.1007/s100510050929
  • [6] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs 2000
  • [7] A. Kraskov, H. Stogbauer, R.G. Andrzejak, P. Grassberger, Europhys. Lett. 70, 278 (2005), doi: 10.1209/epl/i2004-10483-y
  • [8] M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, Eur. Phys. J. B 55, 209 (2007), doi: 10.1140/epjb/e2006-00414-4
  • [9] S. Drożdż, F. Grummer, F. Ruf, J. Speth, Physica A 294, 226 (2001), doi: 10.1016/S0378-4371(01)00119-4
  • [10] A. Rényi, Acta Math. Acad. Sci. H. 10, 441 (1959), doi: 10.1007/BF02024507
  • [11] D. Hsieh, J. Financ. 46, 1839 (1991), doi: 10.1111/j.1540-6261.1991.tb04646.x
  • [12] D. Hsieh J. Bus. 62, 339 (1989), doi: 10.1086/296466
  • [13] J.A. Scheinkman, B. Lebaron, J. Bus. 62, 311 (1989), doi: 10.1086/296465
  • [14] P. Fiedor, Phys. Rev. E 89, 052801 (2014), doi: 10.1103/PhysRevE.89.052801
  • [15] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons 1991, doi: 10.1002/0471200611
  • [16] Fang Zhou, Jieyue He, Wei Zhong, in: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, IEEE 2007, p. 1051, doi: 10.1109/BIBE.2007.4375687
  • [17] Fang Zhou, Jieyue He, Wei Zhong, Y. Pan, Int. J. Comput. Biol. Drug Des. 2, 187 (2009), doi: 10.1504/IJCBDD.2009.028823
  • [18] A.C. Muller, S. Nowozin, C.H. Lampert, Pattern Recognition, Lect. Notes Comp. Sci., Springer, Berlin 2012, Chap. 'Information Theoretic Clustering Using Minimum Spanning Trees', doi: 10.1007/978-3-642-32717-9_21
  • [19] L. Paninski, Neural Comput. 15, 1191 (2003), doi: 10.1162/089976603321780272
  • [20] M. Palus, V. Komarek, T. Prochazka, Z. Hrncir, K. Sterbova, IEEE Eng. Med. Biol. 20, 65 (2001), doi: 10.1109/51.956821
  • [21] A. Papana, D. Kugiumtzis, Int. J. Bifurcat. Chaos 18, 4197 (2009), doi: 10.1142/S0218127409025298
  • [22] C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948), doi: 10.1002/j.1538-7305.1948.tb01338.x
  • [23] J. Beirlant, E.J. Dudewicz, L. Gyorfi, E.C. van der Meulen, Int. J. Math. Stat. Sci. 6, 17 (1997)
  • [24] G. Darbellay, I. Vajda, IEEE T. Inform. Theory 45, 1315 (1999), doi: 10.1109/18.761290
  • [25] C.O. Daub, R. Steuer, J. Selbig, S. Kloska, BCM Bioinformatics 5, 118 (2004), doi: 10.1186/1471-2105-5-118
  • [26] W. Nemenman, W. Bialek, R. de Ruyter van Steveninck, Phys. Rev. E 69, 056111 (2004), doi: 10.1103/PhysRevE.69.056111
  • [27] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang, Bioinformatics 17, 149 (2001), doi: 10.1093/bioinformatics/17.2.149
  • [28] M. Tumminello, T. Aste, T. Di Matteo, R.N. Mantegna, PNAS 102, 10421 (2005), doi: 10.1073/pnas.0500298102
  • [29] M. Tumminello, F. Lillo, R.N. Mantegna, J. Econ. Behav. Organ. 75, 40 (2010), doi: 10.1016/j.jebo.2010.01.004
  • [30] G.L. Miller, J. Comb. Theory 43, 25 (1987), doi: 10.1016/0095-8956(87)90028-1
  • [31] P. Fiedor, Physica A 413, 180 (2014), doi: 10.1016/j.physa.2014.06.066
  • [32] N. Navet, Shu-Heng Chen, in: Natural Computing in Computational Finance, Eds. T. Brabazon, M. O'Neill, Vol. 100 of Studies in Computational Intelligence, Springer 2008, doi: 10.1007/978-3-540-77477-8_11
  • [33] P. Fiedor, in: Proceedings of the IEEE Computational Intelligence for Financial Engineering & Economics 2014, Eds. A. Serguieva, D. Maringer, V. Palade, R.J. Almeida, IEEE, London 2014, p. 247, doi: 10.1109/CIFEr.2014.6924080
  • [34] R. Steuer, L. Molgedey, W. Ebeling, M. Jiménez-Montaño, Eur. Phys. J. B 19, 265 (2001), doi: 10.1007/s100510170335
  • [35] G. Bonanno, G. Caldarelli, F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 046130 (2003), doi: 10.1103/PhysRevE.68.046130
  • [36] J. Heer, N. Kong, M. Agrawala, in: ACM Human Factors in Computing Systems, ACM, Boston 2009, p. 1303, doi: 10.1145/1518701.1518897

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n3a05kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.