Journal
Article title
Title variants
Languages of publication
Abstracts
The solid solution crystals, Bi_{4}(Ge_{x}Si_{1-x})_{3}O_{12} (BGSO) with x=0, 0.05, and 0.15, have been grown by the modified vertical Bridgman method. The as-grown crystals show 80% of transmittance with an absorption edge of 285 nm. The relative light yields of BGSO crystals are found to be 7.2%, 6.3%, and 4.2% of CsI(Tl) crystal for x=0, 0.05, and 0.15, respectively. The energy resolutions of these crystals are 18.9%, 21.3%, and 24.7%, respectively, with PMT for 662 keV gamma rays at room temperature when exposed to ^{137}Cs γ -ray. The scintillation performance of BGSO crystals clearly deteriorates with the increase of Ge content. However, the appropriate number of germanium ions doped to BSO crystal can improve its crystallization behavior and effectively restrain component segregation. It is expected that large size crystals of BGSO will be grown and applied to the dual readout calorimeter in the nearest future.
Discipline
- 78.20.Ci: Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)
- 81.10.Fq: Growth from melts; zone melting and refining
- 78.70.Ps: Scintillation(see also 29.40.Mc, Scintillation detectors)
- 61.05.C-: X-ray diffraction and scattering(for x-ray diffractometers, see 07.85.Jy; for x-ray studies of crystal defects, see 61.72.Dd, Ff)
Journal
Year
Volume
Issue
Pages
854-858
Physical description
Dates
published
2015-03
received
2014-02-09
(unknown)
2014-12-01
Contributors
author
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Department of Fundamental Science, Beifang University of Nationalities, Yinchuan 750021, P.R. China
author
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
author
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
References
- [1] C.F. He, S.J. Fan, J.Y. Liao, Q.S. Shen, D.Z. Shen, T.G. Zhou, Prog. Cryst. Growth Charact. Mater. 11, 253 (1985), doi: 10.1016/0146-3535(85)90007-3
- [2] M. Ishii, M. Kobarashi, Prog. Cryst. Growth Charact. Mater. 23, 245.(1992), doi: 10.1016/0960-8974(92)90025-L
- [3] J.Y. Xu, C.Z. Ye, Y.Q. Chu, J.Y. Liao, Z.W. Ge, S.J. Fan, J. Synth. Cryst. 36, 957 (2007), doi: 10.1016/0168-9002(95)01279-6
- [4] M. Kobayashi, M. Ishii, K. Harada, I. Yamaga, Nucl. Instrum. Methods Phys. Res. A 372, 45 (1996), doi: 10.1016/0168-9002(95)01279-6
- [5] J.Y. Xu, H. Wang, Q.B. He, H. Shen, H. Shimizu, W.D. Xiang, J. Chin. Ceramic Soc. 37, 295 (2009)
- [6] M.J. Weber, R.R. Monchamp, J. Appl. Phys. 44, 5495 (1973), doi: 10.1063/1.1662183
- [7] O.H. Nestor, C.Y. Huang, IEEE Trans. Nucl. Sci. 22, 68 (1975), doi: 10.1109/TNS.1975.4327617
- [8] Z.H. Cho, M. Farukhi, J. Nucl. Med. 18, 840 (1977)
- [9] S.E. Derenzo, IEEE Trans. Nucl. Sci. 28, 131 (1981), doi: 10.1109/TNS.1981.4331154
- [10] Y.K. Akimov, Phys. Part. Nucl. 25, 92 (1994)
- [11] W. Drozdowski, A.J. Wojtowicz, S.M. Kaczmarek, M. Berkowski, Physica B Condens. Matter 405, 1647 (2010), doi: 10.1016/j.physb.2009.12.061
- [12] M. Ishii, K. Harada, Y. Hirose, N. Senguttuvan, M. Kobayashi, I. Yamaga, H. Ueno, K. Miwa, S.J. Fan, Y.T. Fei, M. Nikl, X.Q. Feng, Opt. Mater. 19, 201 (2002), doi: 10.1016/S0925-3467(01)00220-8
- [13] Y.T. Fei, S.J. Fan, R.Y. Sun, J.Y. Xu, M. Ishii, Prog. Cryst. Growth Charact. Mater. 40, 189 (2000), doi: 10.1016/S0960-8974(00)00004-8
- [14] V. Vaithianathan, S. Kumaragurubaran, N. Senguttuvan, J. Cryst. Growth 235, 212 (2002), doi: 10.1016/S0022-0248(01)01725-0
- [15] V. Vaithianathan, A. Claude, P. Santhanaraghavan, J. Cryst. Growth 273, 481 (2005), doi: 10.1016/j.jcrysgro.2004.09.052
- [16] H. Jiang, H.J. Kim, G. Rooh, H. Park, S. Kim, J.K. Cheon, Nucl. Instrum. Methods Phys. Res. A 648, 73 (2011), doi: 10.1016/j.nima.2011.05.043
- [17] Y. Zhang, J.Y. Xu, Q.B. He, B.L. Lu, J. Cryst. Growth 362, 121 (2013), doi: 10.1016/j.jcrysgro.2011.12.088
- [18] J.Y. Xu, S.J. Fan, X.W. Xu, Mater. Sci. Eng. B 85, 50 (2001), doi: 10.1016/S0921-5107(01)00642-0
- [19] R.Y. Zhu, http://www.slac.stanford.edu/econf/C0508141/proc/pres/ALCPG0705_TALK.PDF, August 18, 2005
- [20] Hua Jiang, Gul Rooh, H.J. Kim, H. Park, Sunghwan Kim, Wansong Zhang, U. Fawad, J. Cryst. Growth 367, 73 (2013), doi: 10.1016/j.jcrysgro.2012.12.145
- [21] Zhengye Xiong, Jiayue Xu, Yan Zhang, Zhijian Tan, Mater. Res. Innovat. 18, S2-294 (2014), doi: 10.1179/1432891714Z.000000000418
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n336kz