Title variants
Languages of publication
Abstracts
The effects of random transverse crystal field are investigated in the mean-field approximation on the spin-1 model. The transverse crystal field is applied on a lattice in a bimodal random distribution with a tunable parameter adjusting the strength of one mode with respect to the other one. Then, the phase diagrams are calculated on the reduced temperature-transverse crystal field planes for given values of probability p and coordination number q at zero external magnetic field h. It was found that the model gives both second- and first-order phase transitions and tricritical points which is a well-known behavior of the spin-1 model. In addition, the model also yields critical end points and end points for the first-order phase transition lines for appropriate p values.
Discipline
Journal
Year
Volume
Issue
Pages
818-822
Physical description
Dates
published
2015-03
received
2014-08-08
(unknown)
2015-01-17
Contributors
author
- Erciyes University, Department of Physics, 38039, Kayseri, Turkey
References
- [1] G.P. Taggart, R.A. Tahir-Kheli, E. Shiles, Physica 75, 234 (1974), doi: 10.1016/0031-8914(74)90166-9
- [2] R. Micnas, Physica A 89, 431 (1977), doi: 10.1016/0378-4371(77)90075-9
- [3] K.K. Pan, Y.L. Wang, Phys. Lett. A 178, 325 (1993), doi: 10.1016/0375-9601(93)91110-Q
- [3a] K.K. Pan, Y.L. Wang, Phys. Rev. B 51, 3610 (1995), doi: 10.1103/PhysRevB.51.3610
- [4] N.C. Eddeqaqi, M. Saber, A. El-Atri, M. Kerouad, Physica A 272, 144 (1999), doi: 10.1016/S0378-4371(99)00234-4
- [5] J.R. de Sousa, N.S. Branco, Phys. Rev. E 77, 012104 (2008), doi: 10.1103/PhysRevE.77.012104
- [6] S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, M. Kerouad, F. Dujardin, J. Supercond. Nov. Magn. 24, 571 (2011), doi: 10.1007/s10948-010-1002-7
- [7] J. Oitmaa, A.M.A. von Brasch, Phys. Rev. B 67, 172402 (2003), doi: 10.1103/PhysRevB.67.172402
- [8] Q. Zhang, G.-Z. Wei, Y.-Q. Liang, J. Magn. Magn. Mater. 253, 45 (2002), doi: 10.1016/S0304-8853(02)00053-7
- [9] W. Jiang, G.-Z. Wei, A. Du, L.-Q. Guo, Physica A 313, 503 (2002), doi: 10.1016/S0378-4371(02)00959-7
- [10] M. Boughrara, M. Kerouad, M. Saber, Chin. J. Phys. 49, 672 (2011)
- [11] W. Jiang, G.-Z. Wei, Z.-H. Xin, Phys. Status Solidi B 221, 759 (2000), doi: 10.1002/1521-3951(200010)221:2
- [12] J. Strečka, M. Jaščur, Phys. Rev. B 70, 014404 (2004), doi: 10.1103/PhysRevB.70.014404
- [13] W. Jiang, G.-B. Xiao, G.-Z. Wei, D. An, Z. Qi, Commun. Theor. Phys. 41, 131 (2004), doi: 10.1088/0253-6102/41/1/131
- [14] W. Jiang, G.-Z. Wei, A. Du, J. Magn. Magn. Mater. 250, 49 (2002), doi: 10.1016/S0304-8853(02)00351-7
- [15] K. Htoutou, A. Ainane, M. Saber, J. Magn. Magn. Mater. 269, 245 (2004), doi: 10.1016/j.jmmm.2003.07.002
- [16] X. Qian, S.L. Yan, Solid State Commun. 151, 1846 (2011), doi: 10.1016/j.ssc.2011.05.003
- [17] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011), doi: 10.2478/s11534-010-0050-8
- [18] M. Boughrara, M. Kerouad, Physica A 374, 669 (2007), doi: 10.1016/j.physa.2006.07.045
- [19] T. Moriya, Phys. Rev. 117, 635 (1960), doi: 10.1103/PhysRev.117.635
- [20] L. Berger, S.A. Friedberg, Phys. Rev. 136, A158 (1964), doi: 10.1103/PhysRev.136.A158
- [21] L.G. Polgar, S.A. Friedberg, Phys. Rev. B 6, 3497 (1972), doi: 10.1103/PhysRevB.6.3497
- [22] H. Kumagai, K. Ôno, I. Hayashi, K. Kambe, Phys. Rev. 87, 374 (1952), doi: 10.1103/PhysRev.87.374
- [23] M.E. Lines, Phys. Rev. 137, A982 (1965), doi: 10.1103/PhysRev.137.A982
- [24] N. Uryû, J. Skalyo, S.A. Friedberg, Phys. Rev. 144, 689 (1966), doi: 10.1103/PhysRev.144.689
- [25] G.C. DeFotis, F. Palacio, R.L. Carlin, Phys. Rev. B 20, 2945 (1979), doi: 10.1103/PhysRevB.20.2945
- [25a] G.C. DeFotis, B.K. Failon, F.V. Wells, H.H. Wickman, Phys. Rev. B 29, 3795 (1984), doi: 10.1103/PhysRevB.29.3795
- [26] E. Albayrak, Solid State Commun. 159, 76 (2013), doi: 10.1016/j.ssc.2013.01.030
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n331kz