Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 803-810
Article title

Effect of Tetraethylene Glycol Dimethyl Ether on Electrical, Structural and Thermal Properties of PVA-Based Polymer Electrolyte for Magnesium Battery

Title variants
Languages of publication
The aim of the contribution is to introduce a high performance magnesium conducting polymer electrolytes (PEs) comprising hybrid of poly(vinyl alcohol) (PVA), magnesium bromide (MgBr_2) and tetraethylene glycol dimethyl ether (TEGDME) as plasticizer are prepared at various compositions by solution cast technique. X-ray diffraction and thermogravimetric analyses suggest a substantial structural modification, decrease in crystallinity and various interactions in the polymer electrolyte components due to addition of TEGDME. Also there is a marked decrease in T_{g} with increasing TEGDME. The conductivity conformation with the addition of plasticizer which can be explained on the basis of dissociation of ion aggregates formed in PVA-MgBr_2 polymer electrolytes at higher concentrations of the salt. The ionic conductivity of the polymer electrolyte increased with addition of salt and plasticizer reached to the highest conductivity value of ≈ 10^{-6} S cm^{-1} at 0.8 ml TEGDME. The frequency dependence of AC conductivity obeys the Jonscher power law. The estimated value of Mg^{+2} ion transference number is found to be 0.68 for high conducting film. The open circuit voltage of a solid state battery which based on the optimum polymer electrolyte with a configuration Mg|PE|V_2O_5 is 1.5 V. Also this battery has exhibited a discharge capacity ≈3.78 mAh/g. The discharge characteristics are found to be satisfactory as a laboratory cell.

Physical description
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
  • [1] J. Park, J.S. Kim, J.W. Park, T.H. Nam, K.W. Kim, J.H. Ahn, G. Wang, H.J. Ahn, Electrochim. Acta 92, 427 (2013), doi: 10.1016/j.electacta.2013.01.057
  • [2] D. Lv, T. Xu, P. Saha, M.K. Datta, M.L. Gordin, A. Manivannan, P.N. Kumta, D. Wang, J. Electrochem. Soc. 160, 351 (2013, doi: 10.1149/2.085302jes
  • [3] B. Peng, J. Liang, Z. Tao, J. Chen, J. Mater. Chem. 19, 2877 (2009), doi: 10.1039/B816478A
  • [4] W.Y. Li, C.S. Li, C.Y. Zhou, H. Ma, J. Chen, Angew. Chem. 45, 6155 (2006), doi: 10.1002/ange.200600099
  • [5] Y. Liu, L. Jiao, Q. Wu, J. Du, Y. Zhao, Y. Si, Y. Wang, H. Yuan, J. Mater. Chem. A 1, 5822 (2013), doi: 10.1039/C3TA10786H
  • [6] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 407, 724 (2000), doi: 10.1038/35037553
  • [7] P.C. Sekhar, P.N. Kumar, A.K. Sharma, IOSR J. Appl. Phys. 2, 1 (2012), doi: 10.9790/4861-0240106
  • [8] N.E.A. Shuhaimi, L.P. Teo, S.R. Majid, A.K. Arof, Synth. Met. 160, 1040 (2010), doi: 10.1016/j.synthmet.2010.02.023
  • [9] M. Forsyth, S. Jiazeng, D. MacFarlane, Electrochim. Acta 45, 1249 (2000), doi: 10.1016/S0013-4686(99)00328-X
  • [10] Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Nature 412, 520 (2001), doi: 10.1038/35087538
  • [11] A.R. Polu, A. Kumar, Bull. Mater. Sci. 34, 1063 (2011), doi: 10.1007/s12034-011-0132-2
  • [12] E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Optik 123, 1161 (2012), doi: 10.1016/j.ijleo.2011.06.066
  • [13] T. Winie, A.K. Arof, J. Appl. Polym. Sci. 101, 4474 (2006), doi: 10.1002/app.24284
  • [14] M. Marinaro, S. Theil, L. Jörissen, M.W. Mehrens, Electrochim. Acta 108, 795 (2013), doi: 10.1016/j.electacta.2013.06.147
  • [15] V. Aravindan, G. Kathikaselvi, P. Vickraman, S.P. Naganandhini, J. Appl. Polym. Sci. 112, 3024 (2009), doi: 10.1002/app.29877
  • [16] J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, S. Selvasekarapandian, J. Non-Cryst. Solids 356, 2277 (2010), doi: 10.1016/j.jnoncrysol.2010.08.011
  • [17] E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb, Physica B 405, 2021 (2010), doi: 10.1016/j.physb.2010.01.095
  • [18] W.Y. Yan, L.Y. Ai, X.J. Song, G.G. Rui, Chin. Phys. B 21, 8 (2012), doi: 10.1088/1674-1056/21/8/087902
  • [19] G.K. Prajapati, R. Roshan, P.N. Gupta, J. Phys. Chem. Solids 71, 1717 (2010), doi: 10.1016/j.jpcs.2010.08.023
  • [20] M.R. Johan, O.H. Shy, S. Ibrahim, S.M.M. Yassin, T.Y. Hui, Solid State Ion. 196, 41 (2011), doi: 10.1016/j.ssi.2011.06.001
  • [21] F. Salman, S. Abo-Elhssan, E. Sheha, M.K. Elmansy, Turk. J. Phys. 28, 57 (2004)
  • [22] G.K. Prajapati, P.N. Gupta, Physica B 406, 3108 (2011), doi: 10.1016/j.physb.2011.05.019
  • [23] A.K. Jonscher, Nature 267, 673 (1977)
  • [24] H.M. Ahmad, S.H. Sabeeh, S.A. Hussen, Asian Trans. Sci. Technol. 1, 16 (2012)
  • [25] S. Panero, B. Scrosati, H. Sumathipala, W. Wieczorek, J. Power Sources 167, 510 (2007), doi: 10.1016/j.jpowsour.2007.02.030
  • [26] E. Sheha, M.K. El-Mansy, J. Power Sources 185, 1509 (2008), doi: 10.1016/j.jpowsour.2008.09.046
  • [27] B.M. Abdel-Samiea, A. Basyouni, R. Khalil, E. Sheha, H. Tsuda, T. Matsui, J. Mater. Sci. Eng. 678, 10 (2013)
  • [28] S.A. Mohamed, A.A. Al-Ghamdi, G.D. Sharma, M.K. El Mansy, J. Adv. Res. 5, 79 (2014), doi: 10.1016/j.jare.2012.11.008
  • [29] E. Sheha, M. Nasr, M.K. El-Mansy, Mater. Sci. Technol. (2015), doi: 10.1179/1743284714Y.0000000679
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.