Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
By using the complete diagonalization (of energy matrix) method based on the cluster approach (where the admixture between the d orbitals of d^{n} ion and p orbitals of ligands due to covalence effect is considered), the optical and electron paramagnetic resonance data (three optical band positions and four EPR parameters g_{∥}, g_{⊥}, A_{∥}, A_{⊥}) are calculated for the tetragonal Cu^{2+} center in Cu^{2+}-doped poly vinyl alcohol (PVA) passivated ZnSe nanocrystals with the defect model of Cu^{2+} in the interstitial octahedral site in ZnSe. The calculated results are near the experimental values. The tetragonal elongation of the Cu^{2+} octahedral cluster in ZnSe nanocrystals is obtained. The results are discussed.
Discipline
Journal
Year
Volume
Issue
Pages
795-798
Physical description
Dates
published
2015-03
received
2014-04-24
(unknown)
2014-12-12
Contributors
author
- Department of Physics, Civil Aviation Flight University of China, Guanghan, People's Republic of China
author
- Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
References
- [1] D.D. Sarma, R. Viswanatha, S. Sapra, A. Prakash, M. Garcia-Hernandez, J. Nanosci. Nanotechnol. 5, 1503 (2005), doi: 10.1166/jnn.2005.322
- [2] P.E. Lippens, M. Lannoo, Semicond. Sci. Technol. 6, A157 (1991), doi: 10.1088/0268-1242/6/9A/030
- [3] O. Chen, Y. Yang, T. Wang, H. Wu, C. Niu, J. Yang, Y.C. Gao, J. Am. Chem. Soc. 133, 17504 (2011), doi: 10.1021/ja208337r
- [4] X. Cai, J.E. Martin, L.E. Shea-Rohwer, K. Gong, D.F. Kelly, J. Phys. Chem. C177, 7902 (2013), doi: 10.1021/jp400688g
- [5] W.J. Parak, T. Pellegrino, C. Plank, Nanotechnology 16, R9 (2005), doi: 10.1088/0957-4484/16/2/R01
- [6] S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Nature 420, 800 (2002), doi: 10.1038/nature01217
- [7] P.V. Kamat, J. Phys. Chem. C112, 18737 (2008), doi: 10.1021/jp806791s
- [8] J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, J. Cho, Adv. Mater. 19, 1927 (2007), doi: 10.1002/adma.200602642
- [9] A.J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, B.M. Ngabhushana, C. Shivakumara, R.P.S. Chakradhar, Spectrochim. Acta A79, 476 (2011), doi: 10.1016/j.saa.2011.03.014
- [10] J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Appl. Phys. Lett. 70, 2335 (1997), doi: 10.1063/1.118866
- [11] U.S.U. Thampy, C.R. Krishna, C.V. Reddy, B. Babu, Y.P. Reddy, P.S. Rao, R.V.S.S.N. Ravikumar, Appl. Magn. Reson. 41, 69 (2011), doi: 10.1007/s00723-011-0234-4
- [12] N.R.J. Poolton, G.M. Smith, P.C. Riedi, J.W. Allen, A.V. Firth, D.J. Cole-Hamilton, E.J.L. McInnes, Phys. Status Solidi B 242, 829 (2005), doi: 10.1002/pssb.200440006
- [13] S.M. Begum, M.C. Rao, Y. Aparna, P.S. Rao, R.V.S.S.N. Ravikumar, Spectrochim. Acta A98, 100 (2012), doi: 10.1016/j.saa.2012.08.031
- [14] S.M. Begum, G. Nirmala, K. Ravindranadh, T. Aswani, M.C. Rao, P.S. Rao, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1006, 344 (2011), doi: 10.1016/j.molstruc.2011.09.030
- [15] S.M. Begum, M.C. Rao, P.S. Rao, R.V.S.S.N. Ravikumar, J. Inorg. Organomer. Polym. 23, 350 (2013), doi: 10.1007/s10904-012-9783-8
- [16] T. Matasuoka, Adv. Mater. 8, 469 (1996), doi: 10.1002/adma.19960080603
- [17] S.K. Hong, E. Karts, J.H. Chang, T. Hanada, M. Oku, T. Yao, Appl. Phys. Lett. 78, 165 (2001), doi: 10.1063/1.1339262
- [18] J. Wang, D.C. Hutchings, A. Miller, E.W. Vanstryland, K.R. Welford, I.T. Muirhead, K.L. Lewis, J. Appl. Phys. 73, 4746 (1993), doi: 10.1063/1.353838
- [19] R. Xie, L. Li, Y.`Li, L. Liu, D. Xiao, J. Zhu, J. Alloys Comp. 509, 3314 (2011), doi: 10.1016/j.jallcom.2010.12.046
- [20] I. Broser, H. Maler, H.J. Schulz, Phys. Rev. 140, A2135 (1965), doi: 10.1103/PhysRev.140.A2135
- [21] I. Broser, U. Scherz, M. Wohlecke, J. Lumin. 1-2, 39 (1970), doi: 10.1016/0022-2313(70)90021-9
- [22] M.A. Hitchman, T.D. Waite, Inorg. Chem. 15, 2150 (1970), doi: 10.1021/ic50163a030
- [23] B.J. Reddy, J. Yamauchi, R.V.S.S.N. Ravikumar, A.V. Chandrasekhar, M. Venkataramanaiah, Radiat. Eff. Def. Solids 159, 141 (2004), doi: 10.1080/10420150410001669587
- [24] D.D. Kramushchenko, L.V. Ilyin, V.A. Soltamov, P.G. Baranov, V.P. Kalinushkin, M.I. Studenikin, V.P. Danilov, N.N. Il'ichev, P.V. Shapkin, Phys. Solid State 55, 269 (2013), doi: 10.1134/S1063783413020169
- [25] A.T. Lonchakov, S.M. Podgornykh, V.I. Sokolov, N.B. Gruzdev, G.S. Shakurov, Phys. Solid State 48, 1703 (2006), doi: 10.1134/S1063783406090137
- [26] P. Kumar, K. Singh, J. Nanopart. Res. 13, 1613 (2011), doi: 10.1007/s11051-010-9914-5
- [27] D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, Nano. Lett. 1, 3 (2001), doi: 10.1021/nl005503h
- [28] W.C. Zheng, Y. Mei, Y.G. Yang, H.G. Liu, Philos. Mag. 92, 760 (2012), doi: 10.1080/14786435.2011.634844
- [29] J.S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, London 1964
- [30] B.R. McGarvey, J. Phys. Chem. 71, 51 (1967), doi: 10.1021/j100860a007
- [31] S. Frage, K.M.S. Saxena, J. Karwowski, Handbook of Atomic Data, Elsevier, New York 1970
- [32] E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963), doi: 10.1063/1.1733573
- [33] E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967), doi: 10.1063/1.1712084
- [34] C.R. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Roca Raton (FL) 1989, pp. B-191, F-187
- [35] D. Ball, J.E. Lowther, Phys. Lett. A61, 333 (1977), doi: 10.1016/0375-9601(77)90633-8
- [36] S. Sugano, Y. Tanabe, H. Kamimuru, Multiplets of Transition Metal Ions in Crystals, Academic Press, New York 1970
- [37] J.J. Chen, M.L. Du, J. Qin, Phys. Status Solidi B 174, K15 (1992), doi: 10.1002/pssb.2221740134
- [38] M.L. Du, Phys. Rev. B 46, 5274 (1992), doi: 10.1103/PhysRevB.46.5274
- [39] M.L. Du, M.G. Zhao, Phys. Status Solidi B 153, 249 (1989), doi: 10.1002/pssb.2221530126
- [40] D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989), doi: 10.1088/0034-4885/52/6/002
- [41] W.C. Zheng, Y. Mei, L. He, Philos. Mag. 90, 1701 (2010), doi: 10.1080/14786430903459683
- [42] C. Rudowicz, Z.Y. Yang, Y.Y. Yeung, J. Qin, J. Phys. Chem. Solids 64, 1419 (2003), doi: 10.1016/S0022-3697(03)00190-2
- [43] C. Rudowicz, Y.Y. Zhou, J. Magn. Magn. Mater. 111, 153 (1992), doi: 10.1016/0304-8853(92)91070-A
- [44] T.H. Yeom, S.H. Choh, M.L. Du, M.S. Tang, Phys. Rev. B 53, 3415 (1996), doi: 10.1103/PhysRevB.53.3415
- [45] Y. Celik, E. Bozkurt, I. Ucar, B. Karabulut, J. Phys. Chem. Solids 73, 1010 (2012), doi: 10.1016/j.jpcs.2012.03.005
- [46] B. Karabulut, A. Tufan, Spectrochim. Acta A65, 285 (2006), doi: 10.1016/j.saa.2005.10.044
- [47] P. Dwivedi, R. Kripal, M.G. Misra, J. Alloys Comp. 499, 17 (2010), doi: 10.1016/j.jallcom.2010.03.126
- [48] E. Kalfaoglu, B. Karabulut, Chem. Phys. Lett. 505, 154 (2011), doi: 10.1016/j.cplett.2011.02.038
- [49] R. Valiente, F. Rodriguez, Phys. Rev. B 60, 9423 (1999), doi: 10.1103/PhysRevB.60.9423
- [50] S. Ray, A. Zalkin, D.H. Templeton, Acta Crystallogr. B 29, 2748 (1973), doi: 10.1107/S0567740873007491
- [51] C.J. Simmons, M.A. Hitchman, H. Stratemeier, A.J. Schultz, J. Am. Chem. Soc. 115, 11304 (1993), doi: 10.1021/ja00077a032
- [52] S. Takagi, P.G. Lenhert, M.D. Joesten, J. Am. Chem. Soc. 96, 6606 (1974), doi: 10.1021/ja00828a011
- [53] A.A. Kaminskii, Laser Crystals: Their Physics and Properties, Springer-Verlag, Berlin 1981
- [54] W.C. Zheng, B.X. Li, G.Y. Feng, H.G. Liu, J. Lumin. 138, 214 (2013), doi: 10.1016/j.jlumin.2013.02.003
- [55] W.C. Zheng, S.Y. Wu, Phys. Rev. B 54, 1117 (1996), doi: 10.1103/PhysRevB.54.1117
- [56] R.S. Rubins, J.D. Clark, S.K. Jan, J. Chem. Phys. 67, 893 (1977), doi: 10.1063/1.434914
- [57] W.C. Zheng, S.Y. Wu, J. Phys. Condens. Matter 8, 4539 (1996), doi: 10.1088/0953-8984/8/25/011
- [58] T. Gregorkiewicz, S.W. Biernacki, J. Phys. C13, 1285 (1980), doi: 10.1088/0022-3719/13/7/013
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n326kz