PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 787-790
Article title

Impurity-Related Linear and Nonlinear Optical Absorption Coefficients of Unstrained (In,Ga)N-GaN Symmetric Coupled QWs

Content
Title variants
Languages of publication
EN
Abstracts
EN
Linear, third-order nonlinear and total optical absorption coefficients associated with intra-conduction band in wurtzite unstrained (In,Ga)N-GaN coupled quantum wells are calculated. Based on the effective-mass and the one-band parabolic approximations, the well and the barrier-widths effects are investigated variationally under finite confinement potential barrier. The results indicate that the structure size have a great influence on the optical properties. The results reveal also that larger optical absorption coefficients are obtained compared to single quantum well and a significant red-shift is obtained as the structure size increases. It is found that the modulation of the absorption coefficients can be easily obtained by adjusting the barrier and/or the well widths.
Keywords
EN
Contributors
author
  • LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas, Morocco
  • Special Mathematics, CPGE Rabat, Morocco
author
  • Department of Physics, Govt. Arts and Science College, Melur-625106, Madurai, India
References
  • [1] E. Rosencher, P. Bois, Phys. Rev. B 44, 11315 (1991), doi: 10.1103/PhysRevB.44.11315
  • [2] L. Zhang, H.J. Xie, Phys. Rev. B 68, 235315 (2003), doi: 10.1103/PhysRevB.68.235315
  • [3] J.L. Liu, Y.C. Bai, G.G. Xiong, Physica E 23, 70 (2004), doi: 10.1016/j.physe.2004.01.004
  • [4] C.G. Zhang, K.X. Guo, Physica B 383, 183 (2006), doi: 10.1016/j.physb.2006.03.008
  • [5] Z.E. Lu, K.X. Guo, Commun. Theor. Phys. 45, 171 (2006), doi: 10.1088/0253-6102/45/1/035
  • [6] L. Zhang, Superlatt. Microstruct. 37, 261 (2005), doi: 10.1016/j.spmi.2004.12.010
  • [7] I. Saidi, L. Bouzaine, H. Mejri, H. Maaref, Mater. Sci. Eng. C 28, 831 (2008), doi: 10.1016/j.msec.2007.10.027
  • [8] L. Zhang, Y.M. Chi, J.J. Shi, Phys. Lett. A 366, 256 (2007), doi: 10.1016/j.physleta.2007.01.054
  • [9] M. Bedoya, A.S. Camacho, Phys. Rev. B 72, 155318 (2005), doi: 10.1103/PhysRevB.72.155318
  • [10] T.I. Park, G. Gumbs, Y.C. Chen, J. Appl. Phys. 86, 1467 (1999), doi: 10.1063/1.370914
  • [11] E. Ozturk, I. Sokmen, Superlatt. Microstruct. 41, 36 (2007), doi: 10.1016/j.spmi.2006.10.006
  • [12] H. El Ghazi, A John Peter, Solid State Comm. 201, 5 (2015), doi: 10.1016/j.ssc.2014.09.024
  • [13] M.J. Karimi, A. Keshavarz, A. Poostforush, Superlatt. Microstruct. 49, 441 (2011), doi: 10.1016/j.spmi.2011.01.003
  • [14] H. El Ghazi, I. Zorkani, A. Jorio, Physica B Condens. Matter 412, 87 (2013), doi: 10.1016/j.physb.2012.12.009
  • [15] H. El Ghazi, A. Jorio, I. Zorkani, Physica B Condens. Matter 410, 49 (2013), doi: 10.1016/j.physb.2012.10.027
  • [16] H. Panahi, M. Maleki, J. Appl. Sci. 8, 636 (2008), doi: 10.3923/jas.2008.636.641
  • [17] H. El Ghazi, A. Jorio, I. Zorkani, Physica B Condens. Matter 426, 155 (2013), doi: 10.1016/j.physb.2013.06.004
  • [18] E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107N (2013), doi: 10.1063/1.4825320
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n324kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.