PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 748-752
Article title

First Order Hyperpolarizabilities, NPA and Fukui Functions of Cyclohexanone by Density Functional Theory Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
The molecular structure of cyclohexanone was calculated by the B3LYP density functional model with 6-311++G(d,p) basis set by Gaussian program. The results from natural bond orbital analysis have been analyzed in terms of the hybridization of atoms and the electronic structure of the title molecule. The formation of hydrogen bond was investigated using natural bond orbital calculation. The electron density based local reactivity descriptors such as Fukui functions were calculated. The dipole moment (μ) and polarizability (α), anisotropy polarizability (Δα) and first order hyperpolarizability (β_{tot}) of the molecule have been reported. Thermodynamic properties of the title compound were calculated at different temperatures.
Keywords
EN
Contributors
  • Department of Physics, Rajalakshmi Engineering College, Thandalam, Chennai-602105, India
  • Department of Applied Physics, Sri Venkateswara College of Engineering, Chennai-602105, India
References
  • [1] W.J. Krasavage, J.L. O'Donoghue, G.D. Divincenzo, in: Patty's Industri Hygiene and Toxicology, Eds. G.D. Clayton, E.E. Clayton, Vol. 2C, 3rd ed., Wiley, New York 1982, pp. 4722, 4780
  • [2] M. Windholz, The Merck Index, 10th ed., Merck & Co., Rahway, NJ 1983, p. 391
  • [3] D.M. Considine, Chemical and Process Technology Encyclopedia, McGraw-Hill, New York 1974, p. 337
  • [4] Chemcylopedia 87, American Chemical Society, Washington DC 1987, p. 62
  • [5] G.G. Hawley, The Condensed Chemical Dictionary, 10th ed., Van Nostrand Reinhold, New York 1981, p. 297
  • [6] D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic), Wiley, New York 2001, doi: 10.1002/0471220655
  • [7] A. Frish, A.B. Nielsen, A.J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburgh, PA 2001
  • [8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.I, Gaussian Inc., Pittsburgh 2003, for ref. [8] and [9] compare also Gaussian 09
  • [9] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973), doi: 10.1007/bf00533485
  • [10] P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209 (1974), doi: 10.1080/00268977400100171
  • [11] A.D. Becke, J. Chem. Phys. 98, 5648 (1993), doi: 10.1063/1.464913
  • [12] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985), doi: 10.1063/1.449486
  • [13] L. Xiao-Hong, L. Xiang-Rua, Z. Xian-Zhou, Comput. Theor. Chem. 969, 27 (2011), doi: 10.1016/j.comptc.2011.05.010
  • [14] M. Snehalatha, C. Ravikumar, I.H. Joe, N. Sekar, V.S. Jayakumar, Spectrochim. Acta 72A, 654 (2009), doi: 10.1016/j.saa.2008.11.017
  • [15] C. James, A. Amal Raj, R. Reghunathan, I.H. Joe, V.S. Jayakumar, J. Raman Spectrosc. 37, 138 (2006), doi: 10.1002/jrs.1554
  • [16] J. Liu, Z. Chen, S. Yuan, J. Zhejiang, Univ. Sci. B 6, 584 (2005), doi: 10.1631/jzus.2005.B0584
  • [17] R.K. Roy, K. Hirao, S. Krishnamurthy, S. Pal, J. Chem. Phys. 115, 2901 (2001), doi: 10.1063/1.1386699
  • [18] P. Kolandaivel, G. Praveen, P. Selvarengan, J. Chem. Sci. 117, 591 (2005), doi: 10.1007/BF02708366
  • [19] C.R. Zhang, H.S. Chen, G.H. Wang, Chem. Res. Chin. U20, 640 (2004)
  • [20] Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, Chem. Phys. Lett. 381, 397 (2003), doi: 10.1016/j.cplett.2003.09.115
  • [21] O. Christiansen, J. Gauss, J.F. Stanton, Chem. Phys. Lett. 305, 147 (1999), doi: 10.1063/1.470824.8.8.0
  • [22] R. Zhang, B. Dub, G. Sun, Y.X. Sun, Spectrochim. Acta A 75, 1115 (2010), doi: 10.1016/j.saa.2009.12.067
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n317kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.