Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 734-740
Article title

Study of the Diffused Reflectance and Microstructure for the Phase Transformation of KNO_{3}

Title variants
Languages of publication
Optical, micro-structural, thermal and electrical properties of the investigated potassium nitrate (KNO_{3}) samples were characterized by various techniques such as X-ray analysis, scanning electron microscopy, UV-VIS-NIR absorption and differential scanning calorimetry. The presence of structural phase transition is checked by differential scanning calorimetry, electrical and X-ray analysis measurement. The thermal energy required for such transformation is calculated and found to be 46.2 J/g. The activation energies of the electrical conduction for KNO_{3} were found to be 0.236 eV for phase II and 0.967 eV for phase I. The optical band gaps of KNO_{3} for the higher photon energy are calculated and equal to 5.03 and 5.01 eV for II and I phases, respectively and at lower photon energy, the values are equal to 3.84 and 3.80 eV for II and I phases, respectively. The data which leads to the interpretation of electronic spectra of potassium nitrate is possible to assume that the long wavelength part of absorption band corresponds to n-π* transition. Then, the short-wavelength part is probably due to the transition in a higher excited state of symmetry π-π*. The mean values of crystalline sizes are determined by scanning electron microscopy analysis. Such information can considerably aid in understanding the process of transformations near the phase crystal modifications at 129°C.
  • Physics Department, Faculty of Science, Cairo University, Cairo, Egypt
  • Nano-Science and Semiconductor Labs., Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
  • Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Physics Department, Faculty of Science, El-Fayoum University, El-Fayoum, Egypt
  • [1] P. Papon, J. Leblond, P.H.E. Meijer, The Physics of Phase Transitions, Springer Verlag, Berlin 2002, doi: 10.1007/978-3-662-04989-1
  • [2] D.J.W. Grant, in: Polymorphism in Pharmaceutical Solids, Ed. H.G. Brittain, Marcel Dekker, New York 1999, p. 1
  • [3] L. Yu, S.M. Reutzel, G.A. Stephenson, Pharm. Sci. 1, 118 (1998)
  • [4] R. Kawashima, K. Katsuki, K. Suzuki, Phys. Status Solidi B 129, 697 (1985), doi: 10.1002/pssb.2221290230
  • [5] M. Hafez, I.S. Yahia, S. Taha, Appl. Phys. A 116, 1445 (2014), doi: 10.1007/s00339-014-8257-y
  • [6] V.M. Fridkin, Ferroelectric Semiconductors, Consultants Bureau, New York 1980
  • [7] S. Sawada, S. Nomura, S. Fujii, J. Phys. Soc. Jpn. 13, 1549 (1958), doi: 10.1143/JPSJ.13.1549
  • [8] T. Yanagi, J. Phys. Soc. Jpn. 20, 1351 (1965), doi: 10.1143/JPSJ.20.1351
  • [9] S.V. Karpovan, D.A.A. Shulton, J. Phys. Chem. Solids 29, 475 (1968), doi: 10.1016/0022-3697(68)90124-8
  • [10] M. Balkanski, M.K. Teng, M. Nusimovici, Phys. Rev. 176, 1098 (1968), doi: 10.1103/PhysRev.176.1098
  • [11] B. Cleaver, E. Rhodes, A.R. Ubbelohde, Proc. R. Soc. 276A, 437 (1963), doi: 10.1098/rspa.1963.0217
  • [11a] B. Cleaver, E. Rhodes, A.R. Ubbelohde, Proc. R. Soc. 276A, 453 (1963), doi: 10.1098/rspa.1963.0218
  • [12] K.L. McEwen, J. Chem. Phys. 92, 547 (1961), doi: 10.1063/1.1700981
  • [13] G.P. Smith, C.R. Boston, J. Chem. Phys. 34, 1396 (1961), doi: 10.1063/1.1731751
  • [14] A.M. Sisti Galante, B.M. Rzyski, L.L. Campos, A.L. Villavicencio, Radiat. Phys. Chem. 63, 719 (2002), doi: 10.1016/S0969-806X(01)00605-3
  • [15] F. El-Kabbany, G. Said, S. Mahbous, S. Taha, Phys. Status Solidi A 95, 495 (1986), doi: 10.1002/pssa.2210950217
  • [16] W. Hanke, Adv. Phys. 27, 287 (1978), doi: 10.1080/00018737800101384
  • [17] B.L. Davis, E.H. Oshier, Am. Mineral. 52, (1967)
  • [18] S.M. Juds, Photoelectric Sensors and Controls: Selection and Application, CRC Press, 1988, p. 29
  • [19] R.A. Schoonheydt, in: Characterization of Catalysts, Ed. F. Delannay, Marcel Dekker, 1984, p. 125
  • [20] R. Kellerman, in: Spectroscopy in Heterogeneous Catalysis, Eds. W.N. Delgass, G.L. Haller, R. Kellerman, J.H. Lunsford, Academic Press, New York 1979, p. 86
  • [21] K. Klier, in: Vibrational Spectroscopies for Adsorbed Species, Eds. A.T. Bell, M.L. Hair, American Chemical Society Symposium Series, Vol. 137, 1980, p. 141
  • [22] R.A. Schoonheydt, in: Advanced Methods in Clay Minerals Analysis, Ed. J.J. Fripiat, Elsevier, Amsterdam 1981, p. 169
  • [23] C. Aydin, M.S. Abd El-Sadek, Kaibo Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013), doi: 10.1016/j.optlastec.2012.11.004
  • [24] F. Yakuphanoglu, R. Mehrotra, A. Gupta, M. Munoz, J. Appl. Polym. Sci. 114, 794 (2009), doi: 10.1002/app.28535
  • [25] E. Yassitepe, Z. Khalifa, G.H. Jaffari, C.-S. Chou, S. Zulfiqar, M.I. Sarwar, S.I. Shah, Powder Technol. 201, 27 (2010), doi: 10.1016/j.powtec.2010.02.034
  • [26] F. Urbach, Phys. Rev. 92, 1324 (1953), doi: 10.1103/PhysRev.92.1324
  • [27] I.S. Yahia, A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Superlatt. Microstruct. 53, 63 (2013), doi: 10.1016/j.spmi.2012.09.008
  • [28] T.C. Morrill, R.M. Silverstein, G.C. Bassler, Spectrometric Identification of Organic Compounds, Wiley, New York 1981
  • [29] S. Crouch, D.A. Skoog, Principles of Instrumental Analysis, Thomson Brooks/Cole, Australia 2007, p. 335
  • [30] V. Anan'ev, M. Miklin, Opt. Mater. 14, 303 (2000), doi: 10.1016/S0925-3467(99)00130-5
  • [31] J.F. Wyatt, I.H. Hiller, V.R. Saunders, J.A. Connon, M. Barker, J. Chem. Phys. 54, 5311 (1971), doi: 10.1063/1.1674829
  • [32] M. Balkanski, M.K. Teng, M. Nusimovici, Phys. Rev. 176, 1098 (1968), doi: 10.1103/PhysRev.176.1098
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.