Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 669-673

Article title

Noether Theorems and Discrete Variational Integrators in Field Theory

Content

Title variants

Languages of publication

EN

Abstracts

EN
The discrete analogue of the Noether-type identities in field theory is investigated by means of the difference discrete variational principle in which the difference is regarded as an entire geometric object. The discrete counterparts of the Noether theorems are obtained. It is proved that there exists the discrete version of the Noether conservation law in field theory. The discretization for the nonlinear Schrödinger equation is presented to illustrate the results.

Keywords

EN

Year

Volume

127

Issue

3

Pages

669-673

Physical description

Dates

published
2015-03
received
2014-05-01
(unknown)
2015-01-31

Contributors

author
  • Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
  • Department of Physics, Henan Institute of Education, Zhengzhou 450046, China
author
  • Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
  • Department of Mechanics, Shanghai University, Shanghai 200444, China
  • Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
author
  • Department of Physics, Henan Institute of Education, Zhengzhou 450046, China

References

  • [1] G.D. Birkhoff,Proc. Am. Acad. Arts Sci. 49, 521 (1913), doi: 10.2307/20025482
  • [2] J.A. Cadzow, Int. J. Control 11, 393 (1970), doi: 10.1080/00207177008905922
  • [3] A.E. Noether, Nachr. König. Gesell. Wissen. Göttingen, Math. Phys. KI. 2, 235 (1918), doi: 10.1007/978-3-642-39990-9_13
  • [4] S. Maeda, Math. Japan 23, 587 (1979)
  • [5] V. Dorodnitsyn, R. Kozlov, J. Phys. A Math. Theor. 42, 454007 (2009), doi: 10.1088/1751-8113/42/45/454007
  • [6] J.L. Fu, G.D. Dai, J. Salvador, Y.F. Tang, Chin. Phys. 16, 570 (2007)
  • [7] J.L. Fu, B.Y. Chen, F.P. Xie, Chin. Phys. 17, 4354 (2008)
  • [8] J.L. Fu, X.W. Li, C.R. Li, W.J. Zhao, B.Y. Chen, Sci. China Phys. Mech. 53, 1699 (2010), doi: 10.1007/s11433-010-4075-1
  • [9] P.P. Cai, J.L. Fu, Y.X. Guo, Sci. China Phys. Mech. 56, 1017 (2013), doi: 10.1007/s11433-013-5065-x
  • [10] D.D.S. Djukic, B.D. Vujanovic, Acta Mech. 23, 17 (1975), doi: 10.1007/BF01177666
  • [11] W. Sarlet, F. Cantrijn, SIAM Rev. 23, 467 (1981), doi: 10.1137/1023098
  • [12] F.X. Mei, Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems, Science Press, Beijing 1999
  • [13] Z.P. Li, Int. J. Theor. Phys. 26, 853 (1987)
  • [14] Z.P. Li, Int. J. Theor. Phys. 32, 201 (1993), doi: 10.1007/BF00674405
  • [15] R. Arens, Commun. Math. Phys. 90, 527 (1983), doi: 10.1007/BF01216184
  • [16] J.E. Marsden, G.W. Patrick, S. Shkoller, Commun. Math. Phys. 199, 351 (1998), doi: 10.1007/s002200050505
  • [17] H.Y. Guo, Y.Q. Li, K. Wu, S.K. Wang, Commun. Theor. Phys. 37, 1 (2002)
  • [18] J.B. Chen, Lett. Math. Phys. 61, 63 (2002)
  • [19] A. Trautman, Commun. Math. Phys. 6, 248 (1967), doi: 10.1007/BF01646018
  • [20] V. Dorodnitsyn, R. Kozlov, P. Winternitz, J. Math. Phys. 45, 336 (2004), doi: 10.1063/1.1625418
  • [21] J.L. Fu, B.Y. Chen, Mod. Phys. Lett. B 23, 1315 (2009), doi: 10.1142/S0217984909019417
  • [22] R. Scharf, A. Bishop, Phys. Rev. A 43, 6535 (1991), doi: 10.1103/PhysRevA.43.6535

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n302kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.