Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
In this work a quantitative analysis of thermal compensation has been performed for a magnetic circuit producing magnetic field in the air gap. The considered system consists of Sm₃Co₁₇ type permanent magnet (as a source of magnetic field), nanocrystalline FINEMET alloy (as ultra-soft magnetic medium) and Fe-Ni low Curie temperature compensative material (as a magnetic shunt). Distribution of magnetic field induction in the circuit has been calculated numerically within standard one-dimensional approximation, considering nonlinearities of compensative material as well as demagnetization susceptibility of permanent magnet. It has been theoretically predicted, that an appropriate choice of the compensative element thickness improves significantly thermal stability of magnetic field in the air gap.
Discipline
- 75.50.Vv: High coercivity materials
- 75.50.Kj: Amorphous and quasicrystalline magnetic materials
- 75.50.Bb: Fe and its alloys
- 75.50.Ww: Permanent magnets(for magnets, see 07.55.Db in instruments)
- 07.55.Db: Generation of magnetic fields; magnets(for superconducting magnets, see 84.71.Ba; for beam focusing magnets, see 41.85.Lc in beam optics)
Journal
Year
Volume
Issue
Pages
650-652
Physical description
Dates
published
2015-02
Contributors
author
- Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland
author
- Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland
References
- [1] K. Turek, J. Chmist, H. Figiel,J. Magn. Magn. Mater. 157-158, 65 (1996), doi: 10.1016/0304-8853(95)01259-1
- [2] S.H. Kim, C. Doose,Particle Accelerator Conference 3, 3227 (1997), doi: 10.1109/PAC.1997.753163
- [3] K.R. Rajagopal, B. Singh, B.P. Singh, N. Vedachalam,IEEE Transactions on Magnetics 37, 1995 (2001), doi: 10.1109/20.951032
- [4] T. Mihara, Y. Iwashita, M. Kumada, A. Evgeny, Ch.M. Spencer, SLAC-PUB-10248, 1 (2004)
- [5] T. Mihara, Y. Iwashita, M. Kumada, E. Antokhin, E. Sugiyama, C.M. Spencer, SLAC-PUB-10876, 1 (2004)
- [6] K. Bertsche, G.W.Foster, J-F. Ostiguy, IEEE Proc. 95CH35843, 1381 (1996)
- [7] G.W. Foster, FERMILAB-CONF-98-423-AD Conf. Proc. C980622, 189 (1998)
- [8] Vacuumschmelze http://vacuumschmelze.com
- [9] Y. Yoshizawa, S. Oguma and K. Yamauchi,J. Appl. Phys. 64, 6044 (1988), doi: 10.1063/1.342149
- [10] Hitachi Metals Ltd http://hitachi-metals.co.jp
- [11] G. Herzer,IEEE Trans. Magn. 26, 1397 (1990), doi: 10.1109/20.104389
- [12] G. Herzer, Hanbook of Magnetic Materials, Vol. 10, Chap. 3, Ed. K.H.J. Buschow, Elsevier Science, Amsterdam 1997, p. 415
- [13] T. Szumiata, K. Brzózka, M. Gawroński, B. Górka, J.S. Blázquez-Gámez, T. Kulik, R. Żuberek, A. Ślawska-Waniewska,J. Magn. Magn. Mater. 272-276, 1443 (2004), doi: 10.1016/j.jmmm.2003.12.371
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2161kz