PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 650-652
Article title

Thermal Compensation Model of Magnetic Circuits with Modern Magnetic Materials

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work a quantitative analysis of thermal compensation has been performed for a magnetic circuit producing magnetic field in the air gap. The considered system consists of Sm₃Co₁₇ type permanent magnet (as a source of magnetic field), nanocrystalline FINEMET alloy (as ultra-soft magnetic medium) and Fe-Ni low Curie temperature compensative material (as a magnetic shunt). Distribution of magnetic field induction in the circuit has been calculated numerically within standard one-dimensional approximation, considering nonlinearities of compensative material as well as demagnetization susceptibility of permanent magnet. It has been theoretically predicted, that an appropriate choice of the compensative element thickness improves significantly thermal stability of magnetic field in the air gap.
Keywords
Contributors
author
  • Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland
  • Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland
References
  • [1] K. Turek, J. Chmist, H. Figiel,J. Magn. Magn. Mater. 157-158, 65 (1996), doi: 10.1016/0304-8853(95)01259-1
  • [2] S.H. Kim, C. Doose,Particle Accelerator Conference 3, 3227 (1997), doi: 10.1109/PAC.1997.753163
  • [3] K.R. Rajagopal, B. Singh, B.P. Singh, N. Vedachalam,IEEE Transactions on Magnetics 37, 1995 (2001), doi: 10.1109/20.951032
  • [4] T. Mihara, Y. Iwashita, M. Kumada, A. Evgeny, Ch.M. Spencer, SLAC-PUB-10248, 1 (2004)
  • [5] T. Mihara, Y. Iwashita, M. Kumada, E. Antokhin, E. Sugiyama, C.M. Spencer, SLAC-PUB-10876, 1 (2004)
  • [6] K. Bertsche, G.W.Foster, J-F. Ostiguy, IEEE Proc. 95CH35843, 1381 (1996)
  • [7] G.W. Foster, FERMILAB-CONF-98-423-AD Conf. Proc. C980622, 189 (1998)
  • [8] Vacuumschmelze http://vacuumschmelze.com
  • [9] Y. Yoshizawa, S. Oguma and K. Yamauchi,J. Appl. Phys. 64, 6044 (1988), doi: 10.1063/1.342149
  • [10] Hitachi Metals Ltd http://hitachi-metals.co.jp
  • [11] G. Herzer,IEEE Trans. Magn. 26, 1397 (1990), doi: 10.1109/20.104389
  • [12] G. Herzer, Hanbook of Magnetic Materials, Vol. 10, Chap. 3, Ed. K.H.J. Buschow, Elsevier Science, Amsterdam 1997, p. 415
  • [13] T. Szumiata, K. Brzózka, M. Gawroński, B. Górka, J.S. Blázquez-Gámez, T. Kulik, R. Żuberek, A. Ślawska-Waniewska,J. Magn. Magn. Mater. 272-276, 1443 (2004), doi: 10.1016/j.jmmm.2003.12.371
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2161kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.