PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 588-590
Article title

Electromagnetic Waves Generation in Ni_{2.14}Mn_{0.81}GaFe_{0.05} Heusler Alloy at Structural Phase Transition

Content
Title variants
Languages of publication
EN
Abstracts
EN
Electromagnetic waves generated by the Heusler alloy Ni_{2.14}Mn_{0.81}GaFe_{0.05} at structural phase transition was detected in the frequency range of 28-32 GHz. Influence of the kinetics of phase transitions on the nature of the sample millimeter radiation was studied as well. It has been observed that the contribution of the intrinsic radiation increases with increasing of the heating/cooling rate. The possible mechanisms and theory of such effect is discussed. It is shown that the maximum radiation intensity should be emitted in direction perpendicular to the movement of interphase boundary.
Keywords
EN
Contributors
author
  • Chelyabinsk State University, Br. Kashirinykh 129, 454001 Chelyabinsk, Russia
author
  • Chelyabinsk State University, Br. Kashirinykh 129, 454001 Chelyabinsk, Russia
author
  • Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Mokhovaya 11/7, 125009 Moscow, Russia
author
  • Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Mokhovaya 11/7, 125009 Moscow, Russia
author
  • Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Mokhovaya 11/7, 125009 Moscow, Russia
author
  • Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Mokhovaya 11/7, 125009 Moscow, Russia
author
  • Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Mokhovaya 11/7, 125009 Moscow, Russia
References
  • [1] A.M. Kosevich, JETP Lett. 11, 369 (1970)
  • [2] Yu.I. Balkarei, E.V. Chenskii, JETP Lett. 13, 190 (1971)
  • [3] A. Misra, R.Ch. Prasad, V.S. Chauhan, B. Srilakshmi, Int. J. Fract. 45, 99 (2007), doi: 10.1007/s10704-007-9107-0
  • [4] F.R.N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford 1967
  • [5] A. Misra, Nature (London) 254, 133 (1975), doi: 10.1038/254133a0
  • [6] V. Jagasivamani, K.J. Iyer, Mater. Lett. 6, 418 (1988), doi: 10.1016/0167-577X(88)90043-2
  • [7] B. Srilakshmi, A. Misra, J. Mater. Sci. 40, 6079 (2005), doi: 10.1007/s10853-005-1293-4
  • [8] A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakova, A.V. Glebov, V.V. Koledov, D.A. Kosolapov, V.G. Shavrov, A.A. Tulaikova, E.P. Krasnoperov, T. Takagi, Phys. Lett. A 291, 175 (2001), doi: 10.1016/S0375-9601(01)00688-0
  • [9] V.V. Sokolovskiy, R.R. Fayzullin, V.D. Buchelnikov, M.O. Drobosyuk, S.V. Taskaev, V.V. Khovaylo, J. Magn. Magn. Mater. 343, 6 (2013), doi: 10.1016/j.jmmm.2013.04.069
  • [10] A.P. Kamantsev, V.V. Koledov, V.G. Shavrov, I.S. Tereshina, Solid State Phenom. 215, 113 (2014), doi: 10.4028/www.scientific.net/SSP.215.113
  • [11] R.M. Peleshchak, B.A. Lukiyanets, Tech. Phys. Lett. 24, 57 (1998), doi: 10.1134/1.1261993
  • [12] I.V. Stasyuk, R.M. Peleshchak, Ukr. Fiz. Zh. 36, 1744 (1991) (in Ukrainian)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2140kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.