Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 585-587

Article title

Order-Disorder Transition in 2D Conserved Spin System with Cooperative Dynamics

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work Monte Carlo simulations with usage of dynamic lattice liquid model are presented, instead of the widely used direct exchange or vacancy dynamics, to investigate the dynamics of phase separation phenomenon in spin conserved system with all lattice sites occupied. The dynamic behaviour of domain growth and particle diffusion is discussed for the modified conserved order parameter Ising model. The dynamic lattice liquid model dynamics enables non-locally correlated relaxation dynamics and allows to simulate dense systems in absence of vacancies and parallel treatment of all spins. This approach involves cooperative movement of system elements enabling observation of the order-disorder phase transition in a system with highly correlated motions. Simulations were performed on 2D triangular lattice for several investigated temperatures. Presented results include temporal evolution of domain morphology and diffusion of system elements.

Keywords

EN

Contributors

author
  • Department of Molecular Physics, Łódź University of Technology, S. Żeromskiego 116, 90-924 Łódź, Poland
author
  • Department of Molecular Physics, Łódź University of Technology, S. Żeromskiego 116, 90-924 Łódź, Poland

References

  • [1] M. Niss, Arch. Hist. Exact Sci. 63, 243 (2009), doi: 10.1007/s00407-008-0039-5
  • [2] J.W. Cahn, J. Chem. Phys. 42, 93 (1965), doi: 10.1063/1.1695731
  • [3] I.M. Lifshitz, V.V. Slyozow, J. Phys. Chem. Solids 19, 35 (1961), doi: 10.1016/0022-3697(61)90054-3
  • [4] K. Kawasaki, Phys. Rev. 145, 224 (1965), doi: 10.1103/PhysRev.145.224
  • [5] K. Yaldram, K. Binder, J. Stat. Phys. 62, 161 (1991), doi: 10.1007/BF01020864
  • [6] M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, Oxford 1999
  • [7] K. Yaldram, K. Binder, Acta Metall. Mater. 39, 707 (1991), doi: 10.1016/0956-7151(91)90139-R
  • [8] P. Fratzl, O. Penrose, Phys. Rev. B 50, 3477 (1994), doi: 10.1103/PhysRevB.50.3477
  • [9] T. Pakula, J. Mol. Liq. 86, 109 (2000), doi: 10.1016/S0167-7322(99)00132-4
  • [10] P. Polanowski, J. Non-Cryst. Solids 353, 4575 (2007), doi: 10.1016/j.jnoncrysol.2007.03.040
  • [11] P. Polanowski, Z. Koza, Phys. Rev. E 74, 036103 (2006), doi: 10.1103/PhysRevE.74.036103
  • [12] P. Polanowski, T. Pakula, J. Chem. Phys. 117, 4022 (2002), doi: 10.1063/1.1495836
  • [13] P. Polanowski, J.K. Jeszka, K. Matyjaszewski, Polymer 54, 1979 (2013), doi: 10.1016/j.polymer.2012.12.076
  • [14] K. Halagan, P. Polanowski, J. Non-Cryst. Solids 355, 1318 (2009), doi: 10.1016/j.jnoncrysol.2009.05.019
  • [15] R.M.F. Houtappel, Physica 16, 425 (1950), doi: 10.1016/0031-8914(50)90130-3
  • [16] D.A. Huse, Phys. Rev. B 34, 7845 (1986), doi: 10.1103/PhysRevB.34.7845

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2139kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.