Title variants
Languages of publication
Abstracts
Electronic transport in a graphene junction is considered theoretically. Graphene is assumed to be deposited on a substrate which generates Rashba spin-orbit coupling. However, the Rashba parameters in the two parts of the junction are assumed to be generally different. Additionally, different gate voltages are applied to the two parts, which allow tuning the Fermi level and potential step. We analyze the probabilities of electron transmission through the junction and electrical conductance in the linear response regime.
Discipline
- 73.23.Ad: Ballistic transport
- 72.80.Vp: Electronic transport in graphene
- 72.20.Fr: Low-field transport and mobility; piezoresistance
- 73.40.Lq: Other semiconductor-to-semiconductor contacts,p-njunctions, and heterojunctions
- 75.70.Tj: Spin-orbit effects(see also 71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
Journal
Year
Volume
Issue
Pages
481-483
Physical description
Dates
published
2015-02
References
- [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004), doi: 10.1126/science.1102896
- [2] B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W.A. De Heer, F. Petroff, A. Anane, P. Seneor, A. Fert, Nature Physics 8, 557 (2012), doi: 10.1038/nphys2331
- [3] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008), doi: 10.1103/PhysRevLett.100.016602
- [4] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012), doi: 10.1038/nature11458
- [5] D.W. Boukhvalov, M.I. Katsnelson, J. Phys.: Condens. Matter 21, 344205 (2009), doi: 10.1088/0953-8984/21/34/344205
- [6] C. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nature Nanotechnology 5, 722 (2010), doi: 10.1038/nnano.2010.172
- [7] D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006), doi: 10.1103/PhysRevB.74.155426
- [8] H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006), doi: 10.1103/PhysRevB.74.165310
- [9] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, J. Fabian, Phys. Rev. B 80, 235431 (2009), doi: 10.1103/PhysRevB.80.235431
- [10] A. Varykhalov, J. Sánchez-Barriga, A.M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, O. Rader, Phys. Rev. Lett. 101, 157601 (2008), doi: 10.1103/PhysRevLett.101.157601
- [11] J. Sánchez-Barriga, A. Varykhalov, M.R. Scholz, O. Rader, D. Marchenko, A. Rybkin, A.M. Shikin, E. Vescovo, Diamond Relat. Mater. 19, 734 (2010), doi: 10.1016/j.diamond.2010.01.047
- [12] M. Esmaeilzadeh, S. Ahmadi, J. Appl. Phys. 112, 104319 (2012), doi: 10.1063/1.4766812
- [13] A. Dyrdal, V.K. Dugaev, J. Barnaś, Phys. Rev. B 80, 155444 (2009), doi: 10.1103/PhysRevB.80.155444
- [14] M. Rataj, J. Barnaś, Phys. Status Solidi (Rapid Res. Lett.) 7, 997 (2013), doi: 10.1002/pssr.201308052
- [15] C. Ertler, S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 80, 041405 (2009), doi: 10.1103/PhysRevB.80.041405
- [16] E.I. Rashba, Phys. Rev. B 79, 161409 (2009), doi: 10.1103/PhysRevB.79.161409
- [17] M. Rataj, J. Barnaś, Appl. Phys. Lett. 99, 162107 (2011), doi: 10.1063/1.3641873
- [18] P.R. Wallace, Phys. Rev. 71, 622 (1947), doi: 10.1103/PhysRev.71.622
- [19] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005), doi: 10.1103/PhysRevLett.95.226801
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2104kz