Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 356-358

Article title

Dimensionality in Field Theory and in Spin Wave Theory

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The different meaning of dimensionality and universality in field theory and in spin wave theory is illustrated on account of experimental examples. In spin wave theory it is distinguished between the dimensionality of the spin and the dimensionality of the exchange interactions. According to Renormalization Group (RG) theory, these atomistic characteristics are unimportant for the critical dynamics. Instead by inter-atomic interactions the dynamics of the ordered state is determined by the excitations of the continuous magnetic medium. These excitations are bosons. Consequently, the dimensionality of ordered magnets has to be assessed to the dimensionality of the relevant boson field. The most serious consequence of RG theory is that the magnetic ordering transition also is executed by the boson field. Typical for boson dynamics is a finite width of the critical range. In the atomistic models universality applies asymptotically at T_{c} only. It is evident that the critical power functions of the field dynamics are different from those of the atomistic dynamics.

Keywords

EN

Contributors

author
  • Forschungszentrum Jülich, 52425 Jülich, Germany
author
  • Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany

References

  • [1] K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975), doi: 10.1103/RevModPhys.47.773
  • [2] E. Brézin, J.C. Le Guillou, J. Zinn-Justin J. Phys. Rev. B 10, 892 (1974) , doi: 10.1103/PhysRevB.10.892
  • [3] U. Köbler in: Recent Developments in Magnetism Research, Nova Science Publ. Hauppauge, N.Y. (2013)
  • [4] J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962), doi: 10.1103/PhysRev.127.965
  • [5] A. Okazaki, K.C. Turberfield, R.W.H. Stevenson, Phys. Lett. 8, 9 (1964), doi: 10.1016/0031-9163(64)90774-7
  • [6] M.P. Schulhof, R. Nathans, P. Heller, A. Linz, Phys. Rev. B 4, 2254 (1971), doi: 10.1103/PhysRevB.4.2254
  • [7] U. Köbler, A. Hoser, Acta Phys. Pol. A 121, 1176 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p56.pdf
  • [8] Y. Shapira, S. Foner, Phys. Rev. B 1, 3083 (1970), doi: 10.1103/PhysRevB.1.3083
  • [9] U. Köbler, A. Hoser, J.-U. Hoffmann, Physica B 382, 98 (2006), doi: 10.1016/j.physb.2006.02
  • [10] D. Hohlwein, T. Zeiske, Physica B 276-278, 584 (2000), doi: 10.1016/S0921-4526(99)01775-5
  • [11] J.W. Cable, W.C. Koehler, J. Appl. Phys. 53, 1904 (1982), doi: 10.1063/1.330663

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2062kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.