PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 342-344
Article title

Fast Vortex Core Switching at Moderate Temperatures

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Ferromagnetic vortex core switching is investigated using micromagnetic simulations. For that the OOMMF program is used together with a temperature extension we have developed recently. This is a continuum micromagnetic approach, where the well-known Landau-Lifshitz-Gilbert equation (valid for zero temperature) is replaced by the Landau-Lifshitz-Bloch equation. In our research we simulate switching of a ferromagnetic vortex core in a flat disk (diameter 200 nm, thickness 20 nm) with material parameters that resemble permalloy. Temperatures in the range 400 K to 700 K are considered. Switching itself is caused by application of a very short oscillating magnetic pulse. Parameters used resemble conditions met in the experiment: oscillation period 141 ps (equal to the peak width) and amplitude 60 mT. Surprisingly, no large temperature- or discretization dependence is found. Reasons for that are discussed.
Keywords
Contributors
author
  • Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15, CZ-708 33 Ostrava, Czech Republic
author
  • Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
References
  • [1] A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger, Science 298, 577 (2002), doi: 10.1126/science.1075302
  • [2] K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, T. Ono, Appl. Phys. Lett. 99, 262505 (2011), doi: 10.1063/1.3673303
  • [3] Q. Mistral, M. van Kampen, G. Hrkac, J.-V. Kim, T. Devolder, P. Crozat, C. Chappert, L. Lagae, T. Schrefl, Phys. Rev. Lett. 100, 257201 (2008), doi: 10.1103/PhysRevLett.100.257201
  • [4] A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, T. Schrefl, Phys. Rev. B 67, 094410 (2003), doi: 10.1103/PhysRevB.67.094410
  • [5] K.M. Lebecki, U. Nowak, Phys. Rev. B 89, 014421 (2014), doi: 10.1103/PhysRevB.89.014421
  • [6] R. Hertel, S. Gliga, M. Faehnle, C.M. Schneider, Phys. Rev. Lett. 98, 117201 (2007), doi: 10.1103/PhysRevLett.98.117201
  • [7] Y. Liu, S. Gliga, R. Hertel, C. Schneider, Appl. Phys. Lett. 91, 112501 (2007), doi: 10.1063/1.2780107
  • [8] B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schuetz, Nature 444, 461 (2006), doi: 10.1038/nature05240
  • [9] M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C.H. Back, G. Schuetz, Nat. Commun. 2, 279 (2011), doi: 10.1038/ncomms1277
  • [10] M. Kammerer, H. Stoll, M. Noske, M. Sproll, M. Weigand, C. Illg, G. Woltersdorf, M. Fähnle, C. Back, G. Schütz, Phys. Rev. B 86, 134426 (2012), doi: 10.1103/PhysRevB.86.134426
  • [11] K.M. Lebecki, D. Hinzke, U. Nowak, O. Chubykalo-Fesenko, Phys. Rev. B 86, 094409 (2012), doi: 10.1103/PhysRevB.86.094409
  • [12] D.A. Garanin, Phys. Rev. B 55, 3050 (1997), doi: 10.1103/PhysRevB.55.3050
  • [13] K.M. Lebecki, U. Nowak, J. Appl. Phys. 113, 023906 (2013), doi: 10.1063/1.4774411
  • [14] Applied field was constructed from a sinusoid multiplied by a Lorentzian with the full width at half maximum (FWHM) equal to one period
  • [15] C. Andreas, S. Gliga, R. Hertel, J. Magn. Magn. Mater. 362, 7 (2014), doi: 10.1016/j.jmmm.2014.02.097
  • [16] R. Hertel, J. Kirschner, J. Magn. Magn. Mater. 278, L291 (2004), doi: 10.1016/j.jmmm.2004.02.032
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2057kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.