EN
Exact solutions of the eigenproblem of the magnetic pentagonal ring exhibit the arithmetic symmetry expressed in terms of a Galois group of a finite extension of the prime field Q of rationals. We propose here a geometric interpretation of this symmetry in the interior of the Brillouin zone, in terms of point groups. Explicitly, it is a subgroup of the direct product C₄ × D₄. We present also the appropriate irreducible representations of the group.