Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 336-338

Article title

Point Group Interpretation of Galois Symmetry of Bethe Ansatz Solutions of Magnetic Pentagonal Ring

Content

Title variants

Languages of publication

EN

Abstracts

EN
Exact solutions of the eigenproblem of the magnetic pentagonal ring exhibit the arithmetic symmetry expressed in terms of a Galois group of a finite extension of the prime field Q of rationals. We propose here a geometric interpretation of this symmetry in the interior of the Brillouin zone, in terms of point groups. Explicitly, it is a subgroup of the direct product C₄ × D₄. We present also the appropriate irreducible representations of the group.

Keywords

Contributors

author
  • East European State Higher School, T. Terleckiego 6, 37-700 Przemyśl, Poland
author
  • Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Department of Theoretical Physics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, S. Pigonia 1, 35-310 Rzeszów, Poland
author
  • Institute of Mathematics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznań, Poland

References

  • [1] H. Bethe, Z. Phys. 71, 205 (1931) (in German) doi: 10.1007/BF01341708; English translation in: D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689, doi: 10.1142/9789812796523
  • [2] R.J. Baxter, J. Stat. Phys. 108, 1 (2002), doi: 10.1023/A:1015437118218
  • [3] W.J. Caspers, Spin Systems, World Sci., Singapore 1989, doi: 10.1142/9789814503341_fmatter
  • [4] W.J. Caspers, B. Lulek, T. Lulek, M. Kuzma, A. Wal, Int. J. Mod. Pys. B 18, 1277 (2004), doi: 10.1142/S021797920402463X
  • [5] J. Milewski, G. Banaszak, T. Lulek, M. Labuz, Physica B 406, 520 (2011), doi: 10.1016/j.physb.2010.11.027
  • [6] G. Banaszak, B. Lulek, T. Lulek, J. Milewski, B. Szydło, Rep. Math. Phys. 71, 205 (2013), doi: 10.1016/S0034-4877(13)60030-0
  • [7] J. Milewski, G. Banaszak, T. Lulek, M. Labuz, R. Stagraczynski, OSID 19, 1250012 (2012), doi: 10.1142/S1230161212500126
  • [8] J. Milewski, B. Lulek, T. Lulek, M. Labuz, R. Stagraczynski, Physica B 434, 14 (2014), doi: 10.1016/j.physb.2013.10.041
  • [9] B. Lulek, T. Lulek, A. Wal, P. Jakubczyk, Physica B 337, 375 (2003), doi: 10.1016/S0921-4526(03)00430-7
  • [10] S.O. Warnaar, J. Stat. Phys. 82, 657 (1996), doi: 10.1007/BF02179790
  • [11] S. Dasmahapatra, O. Foda, Int. J. Mod. Phys. 38, 1041 (1997), doi: 10.1142/S0217751X98000214
  • [12] B. Lulek, T. Lulek, M. Labuz, R. Stagraczynski, Physica B 405, 2654 (2010), doi: 10.1016/j.physb.2010.03.043

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2055kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.