PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 324-326
Article title

The J₁-J₂ Model on the Anisotropic Triangular and the Square Lattice: Similarities and Differences

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Heisenberg model on a triangular lattice is a prime example for a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. On the other hand, the J₁-J₂ model on the square lattice is a well-known example for frustration induced by competing exchange. The classical phase diagrams of the two models are related in a broad range of the control parameter ϕ=^{-1}(J₂/J₁). In both cases three different types of ground states are realized, each model having a ferromagnetic and an antiferromagnetic region in the phase diagram, and a third phase with columnar magnetic order for the square lattice and an in general incommensurate spiral structure for the triangular lattice. Quantum effects lift degeneracies in the non-FM phases and lead to additional nonmagnetic regions in the phase diagrams. The contribution of zero point fluctuations to ground state energy, wave vector, and ordered moment is discussed.
Keywords
EN
Contributors
author
  • Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
author
  • Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
References
  • [1] T. Jolicoeur, J.C. Le Guillou, Phys. Rev. B 40, 2727 (1989), doi: 10.1103/PhysRevB.40.2727
  • [2] A.V. Chubukov, S. Sachdev, T. Senthil, J. Phys. Condens. Matter 6, 8891 (1994), doi: 10.1088/0953-8984/6/42/019
  • [3] H. Kawamura, S. Miyashita, J. Phys. Soc. Jpn. 53, 4138 (1984), doi: 10.1143/JPSJ.53.4138
  • [4] B. Bernu, P. Lecheminant, C. Lhuillier, L. Pierre, Phys. Rev. B 50, 10048 (1994), doi: 10.1103/PhysRevB.50.10048
  • [5] S.R. White, A.L. Chernyshev, Phys. Rev. Lett. 99, 127004 (2007), doi: 10.1103/PhysRevLett.99.127004
  • [6] J. Merino, R.H. McKenzie, J.B. Marston, C.H. Chung, J. Phys. Condens. Matter 11, 2965 (1999), doi: 10.1088/0953-8984/11/14/012
  • [7] A.E. Trumper, Phys. Rev. B 60, 2987 (1999), doi: 10.1103/PhysRevB.60.2987
  • [8] M.Y. Veillette, J.T. Chalker, R. Coldea, Phys. Rev. B 71, 214426 (2005), doi: 10.1103/PhysRevB.71.214426
  • [9] M.Y. Veillette, A.J.A. James, F.H.L. Essler, Phys. Rev. B 72, 134429 (2005), doi: 10.1103/PhysRevB.72.134429
  • [10] J. Reuther, R. Thomale, Phys. Rev. B 83, 024402 (2011), doi: 10.1103/PhysRevB.83.024402
  • [11] Z. Weihong, R.H. McKenzie, R.R.P. Singh, Phys. Rev. B 59, 14367 (1999), doi: 10.1103/PhysRevB.59.14367
  • [12] M.Q. Weng, D.N. Sheng, Z.Y. Weng, R.J. Bursill, Phys. Rev. B 74, 012407 (2006), doi: 10.1103/PhysRevB.74.012407
  • [13] P. Hauke, Phys. Rev. B 87, 014415 (2013), doi: 10.1103/PhysRevB.87.014415
  • [14] G. Misguich, C. Lhuillier, in: Frustrated Spin Systems, Ed. H.T. Diep, World Sci., 2004
  • [15] S. Sorella, Phys. Rev. Lett. 80, 4558 (1998), doi: 10.1103/PhysRevLett.80.4558
  • [16] R.R.P. Singh, W. Zheng, C.J. Hamer, J. Oitmaa, Phys. Rev. B 60, 7278 (1999), doi: 10.1103/PhysRevB.60.7278
  • [17] H.J. Schulz, T.A.L. Ziman, D. Poilblanc, J. Phys. I (France) 6, 675 (1996), doi: 10.1051/jp1:1996236
  • [18] B. Schmidt, M. Siahatgar, P. Thalmeier, Phys. Rev. B 81, 165101 (2010), doi: 10.1103/PhysRevB.81.165101
  • [19] N. Shannon, B. Schmidt, K. Penc, P. Thalmeier, Eur. Phys. J. B 38, 599 (2004), doi: 10.1140/epjb/e2004-00156-3
  • [20] I. Affleck, J. Phys. A Math. Gen. 31, 4573 (1998), doi: 10.1088/0305-4470/31/20/002
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2051kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.