Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 315-317

Article title

Critical Currents of Bismuth 1G Tape

Content

Title variants

Languages of publication

EN

Abstracts

EN
The critical currents of commercial bismuth based superconducting tape were determined in the two ways. In the first one the transport critical current density was measured by the four points method using the dc current power supply at the liquid nitrogen temperature. In the second one the critical current densities were obtained from the absorption part of ac susceptibility measurements using the Bean model near the critical temperature. The temperature dependence of the critical current densities was fitted to take advantage of the Ginzburg-Landau strong-coupling limit approach. Using the fit parameters the critical current density at 77 K was calculated. The critical temperature of this tape (T_{c}= 110.5 K) was determined from the ac susceptibility measurements.

Keywords

Contributors

author
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Solid State Physics Department, Cracow, Poland
author
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Solid State Physics Department, Cracow, Poland
author
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Solid State Physics Department, Cracow, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Solid State Physics Department, Cracow, Poland

References

  • [1] H.J.M. ter Brake, F.-Im. Buchholz, G. Burnell, T. Claeson, D. Crété, P. Febvre, G.J. Gerritsma, H. Hilgenkamp, R. Humphreys, Z. Ivanov, W. Jutzi, M.I. Khabipov, J. Mannhart, H.-G. Meyer, J. Niemeyer, A. Ravex, H. Rogalla, M. Russo, J. Satchell, M. Siegel, H. Töpfer, F.H. Uhlmann, J.-C. Villégier, E. Wikborg, D. Winkler, A.B. Zorin, Physica C 439, 1 (2006), doi: 10.1016/j.physc.2005.10.017
  • [2] N. Ayai, M. Ueyama, T. Kato, S. Kobayashi, A. Mikumo, T. Kaneko, T. Hikata, K. Hayashi, H. Takei, Advances in Superconductivity XII, Springer-Verlag, Tokyo 2000, p. 631
  • [3] See for instance: J. Azman, H. Abdullah, R. Abd-Shukor, Adv. Condens. Matter Phys. 2014, 1 (2014), and references therein, doi: 10.1155/2014/498747
  • [4] P. Sunwong, J.S. Higgins, D.P. Hampshire, IEEE Trans. Appl. Superconduct. 21, 2840 (2011), and references therein, doi: 10.1109/TASC.2010.2097573
  • [5] G. Grassot, A. Jeremie, R. Flukiger, Supercond. Sci. Technol. 8, 827 (1995), and references therein, doi: 10.1088/0953-2048/8/11/008
  • [6] M. Lelovic, P. Krishnaraj, N.G. Eror, U. Balachandran, Physica C 242, 246 (1995), doi: 10.1016/0921-4534(94)02441-3
  • [7] C.P. Bean Phys. Rev. Lett. 8, 250 (1962), doi: 10.1103/PhysRevLett.8.250
  • [8] J.R. Clem, Physica C 153-155, 50 (1988), doi: 10.1016/0921-4534(88)90491-1
  • [9] J.R. Clem, B. Bumble, S.I. Raider, W.J. Gallagher, Y.C. Shih, Phys. Rev. B 35, 7526 (1987), doi: 10.1103/PhysRevB.35.7526
  • [10] K.A. Müller, M. Takashige, J. Bednorz, Phys. Rev. Lett. 58, 1143 (1987)
  • [10a] Y. Yeshurun, A.P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988), doi: 10.1103/PhysRevLett.60.2202
  • [11] W.M. Woch, R. Zalecki, A. Kołodziejczyk, H. Sudra, G. Gritzner, Supercond. Sci. Technol. 21, 085002 (2008), doi: 10.1088/0953-2048/21/8/085002

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2048kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.