PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 281-283
Article title

Monte Carlo Study of Phase Separation in Magnetic Insulators

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work we focus on the study of phase separation in the zero-bandwidth extended Hubbard with nearest-neighbors intersite Ising-like magnetic interactions J and on-site Coulomb interactions U. The system has been analyzed by means of the Monte Carlo simulations (in the grand canonical ensemble) on two-dimensional square lattice (with N = L × L = 400 sites) and the results for U/(4J) = 2 as a function of chemical potential and electron concentration have been obtained. Depending on the values of interaction parameters the system exhibits homogeneous (anti-)ferromagnetic or non-ordered phase as well as phase separation state. Transitions between homogeneous phases (i.e. antiferromagnetic-non-ordered transitions) can be of first or second order and the tricritical point is also present on the phase diagrams. The electron compressibility K is an indicator of the phase separation and that quantity is of particular interest of this paper.
Keywords
Contributors
author
  • Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
  • Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
  • Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
References
  • [1] H. Barz, Mater. Res. Bull 8, 983 (1973), doi: 10.1016/0025-5408(73)90083-4
  • [2] A.K. Rastogi, A. Berton, J. Chaussy, R. Tournier, H. Patel, R. Chevrel, M. Sergent, J. Low Temp. Phys 52, 539 (1983), doi: 10.1007/BF00682130
  • [3] S. Lamba, A.K. Rastogi, D. Kumar, Phys. Rev. B 56, 3251 (1997), doi: 10.1103/PhysRevB.56.3251
  • [4] E. Berg, E. Fradkin, S.A. Kivelson, J.M. Tranquada, New. J. Phys 11, 115004 (2009), doi: 10.1088/1367-2630/11/11/115004
  • [5] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys 62, 113 (1990), doi: 10.1103/RevModPhys.62.113
  • [6] G.I. Japaridze, E. Müller-Hartmann, Phys. Rev. B 61, 9019 (2000), doi: 10.1103/PhysRevB.61.9019
  • [7] C. Dziurzik, G.I. Japaridze, A. Schadschneider, J. Zittartz, Eur. Phys. J. B 37, 453 (2004), doi: 10.1140/epjb/e2004-00081-5
  • [8] W.R. Czart, S. Robaszkiewicz, Phys. Status Solidi B 243, 151 (2006), doi: 10.1002/pssb.200562502
  • [9] C. Dziurzik, G.I. Japaridze, A. Schadschneider, I. Titvinidze, J. Zittartz, Eur. Phys. J. B 51, 41 (2006), doi: 10.1140/epjb/e2006-00193-x
  • [10] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A 109, 577 (2006) http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z421.pdf
  • [10a] W.R. Czart, S. Robaszkiewicz, Mater. Sci.-Poland 25, 485 (2007)
  • [11] G. Pawłowski, Eur. Phys. J. B 53, 471 (2006), doi: 10.1140/epjb/e2006-00409-1
  • [12] G. Pawłowski, T. Kaźmierczak, Solid State Commun 145, 109 (2008), doi: 10.1016/j.ssc.2007.10.015
  • [13] S. Murawski, K. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1035 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p13.pdf
  • [14] S. Murawski, K.J. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 126, A-110 (2014), doi: 10.12693/APhysPolA.126.A-110
  • [15] D.W. Heermann, Computer Simulation Methods in Theoretical Physics, 2nd ed., Springer-Verlag, Berlin 1990, doi: 10.1007/978-3-642-75448-7
  • [16] F. Mancini, E. Plekhanov, G. Sica, Cen. Eur. J. Phys 10, 609 (2012), doi: 10.2478/s11534-012-0017-z
  • [17] F. Mancini, E. Plekhanov, G. Sica, Eur. Phys. J. B 86, 224 (2013), doi: 10.1140/epjb/e2013-40046-y
  • [18] U. Brandt, J. Stolze, Z. Phys. B 62, 433 (1986), doi: 10.1007/BF01303574
  • [19] J. Jędrzejewski, Physica A 205, 702 (1994), doi: 10.1016/0378-4371(94)90231-3
  • [20] K.J. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 127, 284 (2015), doi: 10.12693/APhysPolA.127.284
  • [21] S. Robaszkiewicz, Acta Phys. Pol. A 55, 453 (1979)
  • [22] S. Robaszkiewicz, Phys. Status Solidi B 70, K51 (1975), doi: 10.1002/pssb.2220700156
  • [23] W. Kłobus, K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 118, 353 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf
  • [23a] K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1032 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p12.pdf
  • [24] S. Robaszkiewicz, Phys. Status Solidi B 59, K63 (1973), doi: 10.1002/pssb.2220590155
  • [25] K. Kapcia, Acta Phys. Pol. A 121, 733 (2012), doi: przyrbwn.icm.edu.pl/APP/PDF/121/a121z4p104.pdf
  • [25a] K.J. Kapcia, Acta Phys. Pol. A 127, 204 (2015), doi: 10.12693/APhysPolA.127.204
  • [25b] K.J. Kapcia, J. Supercond. Novel Magn. in press (2015), doi: 10.1007/s10948-014-2906-4
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2037kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.