Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 198-200

Article title

Signatures of Majorana States in Electron Transport through a Quantum Dot Coupled to a Topological Wire

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We consider theoretically a system composed of a quantum dot coupled to a topological superconducting wire. The dot, being in Coulomb blockade (CB) regime is additionally coupled to the normal leads. The topological wire hosts Majorana states, which, as we show, characteristically modifies conductance through the dot. An unpaired Majorana state in the wire causes a unique temperature dependence of zero bias conductance vs. gate voltage. It decreases in-between CB peaks and on the sides of the peaks from the plateau at ~ e²/2h when temperature increases. At the same time conductance increases at the CB peak positions. It is accompanied by zero bias anomaly in differential conductance. For finite overlap of Majorana states in the wire the zero bias anomaly disappears. Instead, two characteristic Fano resonances of opposite symmetry appear, positioned mirror-symmetrically with respect to zero bias.

Keywords

Contributors

author
  • Institute of Molecular Physics of the Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland

References

  • [1] E. Majorana, Nuovo Cimento 5, 171 (1937), doi: 10.1007/BF02961314
  • [2] A. Stern, N.H. Lindner, Science 339, 1179 (2013), doi: 10.1126/science.1231473
  • [3] L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008), doi: 10.1103/PhysRevLett.100.096407
  • [4] T.D. Stanescu, S. Tewari, J. Phys. Condens. Matt. 25, 233201 (2013), doi: 10.1088/0953-8984/25/23/233201
  • [5] V. Mourik, K. Zuo, S.M. Vrolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012), doi: 10.1126/science.1222360
  • [6] M. Lee, J.S. Lim, R. Lopez, Phys Rev. B 87, 241402(R) (2013), doi: 10.1103/PhysRevB.87.241402
  • [7] D.E. Liu, H.U. Baranger, Phys Rev. B 84, 201308(R) (2011), doi: 10.1103/PhysRevB.84.201308
  • [8] L.P. Kouvenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001), doi: 10.1088/0034-4885/64/6/201
  • [9] J.J. He, T.K. Ng, P.A. Lee, K.T. Law, Phys. Rev. Lett. 112, 037001 (2014), doi: 10.1103/PhysRevLett.112.037001
  • [10] A.C. Hewson, Phys. Rev. 144, 420 (1966), doi: 10.1103/PhysRev.144.420
  • [11] P. Stefański, Phys. Rev. B 79, 0859312 (2009), doi: 10.1103/PhysRevB.79.085312
  • [12] W.G. van der Wiel, S. de Francheschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Science 289, 2105 (2000), doi: 10.1126/science.289.5487.2105
  • [13] E.A. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010), doi: 10.1103/RevModPhys.82.2257

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2009kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.