Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 185-191

Article title

Spin-Dependent Effects in Helical Molecular Systems with Rashba-Like Spin-Orbit Interaction

Content

Title variants

Languages of publication

EN

Abstracts

EN
Strong spin-selective effects have been recently observed in both photoemission and electrical transport experiments in biomolecular systems, opening fascinating possibilities for interfacing semiconductor and biomolecular systems to create highly efficient spintronics devices. From the theoretical and experimental point of view there are strong suggestions that molecular chirality is playing a crucial role. In this study we extend a previously formulated model (R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404 (2012)) describing the linear propagation of a charge with spin along the axis of a helical charge distribution. We explore different parameter regions and show that a strong negative spin polarization as observed in the previously mentioned experiments can be obtained with reasonable values of both the electronic coupling elements and the helical field induced spin-orbit interaction.

Keywords

Contributors

author
  • Institute for Materials Science, Dresden University of Technology, 01062 Dresden, Germany
author
  • Institute for Materials Science, Dresden University of Technology, 01062 Dresden, Germany
  • Dresden Center for Computational Materials Science and Center for Advancing Electronics Dresden
  • Dresden University of Technology, 01062 Dresden, Germany

References

  • [1] Z.H. Xiong, D. Wu, Z. Valy Vardeny, J. Shi, Nature 427, 821 (2004), doi: 10.1038/nature02325
  • [2] S. Mooser, J.F.K. Cooper, K.K. Banger, J. Wunderlich, H. Sirringhaus, Phys. Rev. B 85, 235202 (2012), doi: 10.1103/PhysRevB.85.235202
  • [3] M. Grünewald, M. Wahler, F. Schumann, M. Michelfeit, C. Gould, R. Schmidt, F. Würthner, G. Schmidt, L.W. Molenkamp, Phys. Rev. B 84, 125208 (2011), doi: 10.1103/PhysRevB.84.125208
  • [4] K.-S. Li, Y.-M. Chang, S. Agilan, J.-Y. Hong, J.-C. Tai, W.-C. Chiang, K. Fukutani, P.A. Dowben, M.-T. Lin, Phys. Rev. B 83, 172404 (2011), doi: 10.1103/PhysRevB.83.172404
  • [5] D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.-G. Zhang, T.Z. Ward, Z. Cheng, J. Shen, Phys. Rev. Lett. 104, 236602 (2010), doi: 10.1038/nature02325
  • [6] N. Atodiresei, J. Brede, P. Lazić, V. Caciuc, G. Hoffmann, R. Wiesendanger, S. Blügel, Phys. Rev. Lett. 105, 066601 (2010), doi: 10.1103/PhysRevLett.104.236602
  • [7] B. Göhler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne, Z. Vager, R. Naaman, H. Zacharias, Science 331, 894 (2011), doi: 10.1126/science.1199339
  • [8] Z. Xie, T.Z. Markus, S.R. Cohen, Z. Vager, R. Gutierrez, R. Naaman, Nano Lett. 11, 4652 (2011), doi: 10.1021/nl2021637
  • [9] O. Ben Dor, S. Yochelis, S.P. Mathew, R. Naaman, Y. Paltiel, Nature Commun. 4, 2256 (2013), doi: 10.1038/ncomms3256
  • [10] K. Ray, S.P. Ananthavel, D.H. Waldeck, R. Naaman, Science 283, 814 (1999), doi: 10.1126/science.283.5403.814
  • [11] I. Carmeli, V. Skakalova, R. Naaman, Z. Vager,Angew. Chem. Int. Ed. 41, 761 (2002), doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z
  • [12] I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, J. Chem. Phys. 118, 10372 (2003), doi: 10.1063/1.1580800
  • [13] Z. Vager, R. Naaman, Chem. Phys. 281, 305 (2002), doi: 10.1016/S0301-0104(02)00374-9
  • [14] R. Naaman, Z. Vager, Phys. Chem. Chem. Phys. 8, 2217 (2006), doi: 10.1039/b518103h
  • [15] S.G. Ray, S.S. Daube, G. Leitus, Z. Vager, R. Naaman, Phys. Rev. Lett. 96, 036101 (2006), doi: 10.1103/PhysRevLett.96.036101
  • [16] J.J. Wei, C. Schafmeister, G. Bird, A. Paul, R. Naaman, D.H. Waldeck, J. Phys. Chem. B 110, 1301 (2005), doi: 10.1021/jp055145c
  • [17] D. Mishra, T.Z. Markus, R. Naaman, M. Kettner, B. Gohler, H. Zacharias, N. Friedman, M. Sheves, C. Fontanesi, Proc. Natl. Acad. Sci. USA 110, 14872 (2013), doi: 10.1073/pnas.1311493110
  • [18] S. Yeganeh, M.A. Ratner, E. Medina, V. Mujica, J. Chem. Phys. 131, 014707 (2009), doi: 10.1063/1.3167404
  • [19] E. Medina, F. Lopez, M. Ratner, V. Mujica, Eur. Phys. Lett. 99, 17006 (2012), doi: 10.1209/0295-5075/99/17006
  • [20] R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404 (2012), doi: 10.1103/PhysRevB.85.081404
  • [21] R. Gutierrez, E. Díaz, C. Gaul, T. Brumme, F. Domínguez-Adame, G. Cuniberti, J. Phys. Chem. C 117, 22276 (2013), doi: 10.1021/jp401705x
  • [22] A.M. Guo, Q.F. Sun, Phys. Rev. Lett. 108, 218102 (2012), doi: 10.1103/PhysRevLett.108.218102
  • [23] J. Gersten, K. Kaasbjerg, A. Nitzan, J. Chem. Phys. 139, 114111 (2013), doi: 10.1063/1.4820907
  • [24] A.A. Eremko, V.M. Loktev, Phys. Rev. B 88, 165409 (2013), doi: 10.1103/PhysRevB.88.165409
  • [25] A.-M. Guo, E. Díaz, C. Gaul, R. Gutierrez, F. Domínguez-Adame, G. Cuniberti, Q.F. Sun, Phys. Rev. B 89, 205434 (2014), doi: 10.1103/PhysRevB.89.205434
  • [26] D. Hochberg, G. Edwards, T.W. Kephart, Phys. Rev. E 55, 3765 (1997), doi: 10.1103/PhysRevE.55.3765
  • [27] T. Kubar, P.B. Woiczikowski, G. Cuniberti, M. Elstner, J. Phys. Chem. B 112, 7937 (2008), doi: 10.1021/jp801486d
  • [28] R. Gutiérrez, F. Grossmann, O. Knospe, R. Schmidt, Phys. Rev. A 64, 013202 (2001), doi: 10.1103/PhysRevA.64.013202

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2007kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.