PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 185-191
Article title

Spin-Dependent Effects in Helical Molecular Systems with Rashba-Like Spin-Orbit Interaction

Content
Title variants
Languages of publication
EN
Abstracts
EN
Strong spin-selective effects have been recently observed in both photoemission and electrical transport experiments in biomolecular systems, opening fascinating possibilities for interfacing semiconductor and biomolecular systems to create highly efficient spintronics devices. From the theoretical and experimental point of view there are strong suggestions that molecular chirality is playing a crucial role. In this study we extend a previously formulated model (R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404 (2012)) describing the linear propagation of a charge with spin along the axis of a helical charge distribution. We explore different parameter regions and show that a strong negative spin polarization as observed in the previously mentioned experiments can be obtained with reasonable values of both the electronic coupling elements and the helical field induced spin-orbit interaction.
Keywords
Contributors
author
  • Institute for Materials Science, Dresden University of Technology, 01062 Dresden, Germany
author
  • Institute for Materials Science, Dresden University of Technology, 01062 Dresden, Germany
  • Dresden Center for Computational Materials Science and Center for Advancing Electronics Dresden
  • Dresden University of Technology, 01062 Dresden, Germany
References
  • [1] Z.H. Xiong, D. Wu, Z. Valy Vardeny, J. Shi, Nature 427, 821 (2004), doi: 10.1038/nature02325
  • [2] S. Mooser, J.F.K. Cooper, K.K. Banger, J. Wunderlich, H. Sirringhaus, Phys. Rev. B 85, 235202 (2012), doi: 10.1103/PhysRevB.85.235202
  • [3] M. Grünewald, M. Wahler, F. Schumann, M. Michelfeit, C. Gould, R. Schmidt, F. Würthner, G. Schmidt, L.W. Molenkamp, Phys. Rev. B 84, 125208 (2011), doi: 10.1103/PhysRevB.84.125208
  • [4] K.-S. Li, Y.-M. Chang, S. Agilan, J.-Y. Hong, J.-C. Tai, W.-C. Chiang, K. Fukutani, P.A. Dowben, M.-T. Lin, Phys. Rev. B 83, 172404 (2011), doi: 10.1103/PhysRevB.83.172404
  • [5] D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.-G. Zhang, T.Z. Ward, Z. Cheng, J. Shen, Phys. Rev. Lett. 104, 236602 (2010), doi: 10.1038/nature02325
  • [6] N. Atodiresei, J. Brede, P. Lazić, V. Caciuc, G. Hoffmann, R. Wiesendanger, S. Blügel, Phys. Rev. Lett. 105, 066601 (2010), doi: 10.1103/PhysRevLett.104.236602
  • [7] B. Göhler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne, Z. Vager, R. Naaman, H. Zacharias, Science 331, 894 (2011), doi: 10.1126/science.1199339
  • [8] Z. Xie, T.Z. Markus, S.R. Cohen, Z. Vager, R. Gutierrez, R. Naaman, Nano Lett. 11, 4652 (2011), doi: 10.1021/nl2021637
  • [9] O. Ben Dor, S. Yochelis, S.P. Mathew, R. Naaman, Y. Paltiel, Nature Commun. 4, 2256 (2013), doi: 10.1038/ncomms3256
  • [10] K. Ray, S.P. Ananthavel, D.H. Waldeck, R. Naaman, Science 283, 814 (1999), doi: 10.1126/science.283.5403.814
  • [11] I. Carmeli, V. Skakalova, R. Naaman, Z. Vager,Angew. Chem. Int. Ed. 41, 761 (2002), doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z
  • [12] I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, J. Chem. Phys. 118, 10372 (2003), doi: 10.1063/1.1580800
  • [13] Z. Vager, R. Naaman, Chem. Phys. 281, 305 (2002), doi: 10.1016/S0301-0104(02)00374-9
  • [14] R. Naaman, Z. Vager, Phys. Chem. Chem. Phys. 8, 2217 (2006), doi: 10.1039/b518103h
  • [15] S.G. Ray, S.S. Daube, G. Leitus, Z. Vager, R. Naaman, Phys. Rev. Lett. 96, 036101 (2006), doi: 10.1103/PhysRevLett.96.036101
  • [16] J.J. Wei, C. Schafmeister, G. Bird, A. Paul, R. Naaman, D.H. Waldeck, J. Phys. Chem. B 110, 1301 (2005), doi: 10.1021/jp055145c
  • [17] D. Mishra, T.Z. Markus, R. Naaman, M. Kettner, B. Gohler, H. Zacharias, N. Friedman, M. Sheves, C. Fontanesi, Proc. Natl. Acad. Sci. USA 110, 14872 (2013), doi: 10.1073/pnas.1311493110
  • [18] S. Yeganeh, M.A. Ratner, E. Medina, V. Mujica, J. Chem. Phys. 131, 014707 (2009), doi: 10.1063/1.3167404
  • [19] E. Medina, F. Lopez, M. Ratner, V. Mujica, Eur. Phys. Lett. 99, 17006 (2012), doi: 10.1209/0295-5075/99/17006
  • [20] R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404 (2012), doi: 10.1103/PhysRevB.85.081404
  • [21] R. Gutierrez, E. Díaz, C. Gaul, T. Brumme, F. Domínguez-Adame, G. Cuniberti, J. Phys. Chem. C 117, 22276 (2013), doi: 10.1021/jp401705x
  • [22] A.M. Guo, Q.F. Sun, Phys. Rev. Lett. 108, 218102 (2012), doi: 10.1103/PhysRevLett.108.218102
  • [23] J. Gersten, K. Kaasbjerg, A. Nitzan, J. Chem. Phys. 139, 114111 (2013), doi: 10.1063/1.4820907
  • [24] A.A. Eremko, V.M. Loktev, Phys. Rev. B 88, 165409 (2013), doi: 10.1103/PhysRevB.88.165409
  • [25] A.-M. Guo, E. Díaz, C. Gaul, R. Gutierrez, F. Domínguez-Adame, G. Cuniberti, Q.F. Sun, Phys. Rev. B 89, 205434 (2014), doi: 10.1103/PhysRevB.89.205434
  • [26] D. Hochberg, G. Edwards, T.W. Kephart, Phys. Rev. E 55, 3765 (1997), doi: 10.1103/PhysRevE.55.3765
  • [27] T. Kubar, P.B. Woiczikowski, G. Cuniberti, M. Elstner, J. Phys. Chem. B 112, 7937 (2008), doi: 10.1021/jp801486d
  • [28] R. Gutiérrez, F. Grossmann, O. Knospe, R. Schmidt, Phys. Rev. A 64, 013202 (2001), doi: 10.1103/PhysRevA.64.013202
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2007kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.