PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 176-184
Article title

Dynamical Local Lattice Instability Triggered High T_{c} Superconductivity

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
High T_{c} cuprate superconductors are characterized by two robust features: their strong electronic correlations and their intrinsic dynamical local lattice instabilities. Focusing on exclusively that latter, we picture their parent state in form of a quantum vacuum representing an electronic magma in which bound diamagnetic spin-singlet pairs pop in and out of existence in a Fermi sea of itinerant electrons. The mechanism behind that resides in the structural incompatibility of two stereo-chemical configurations Cu^{II}O₄ and Cu^{III}O₄ which compose the CuO₂ planes. It leads to spontaneously fluctuating Cu-O-Cu valence bonds which establish a local Feshbach resonance exchange coupling between bound and unbound electron pairs. The coupling, being the only free parameter in this scenario, the hole doping of the parent state is monitored by varying the total number of unpaired and paired electrons, in chemical equilibrium with each other. Upon lowering the temperature to below a certain T*, bound and unbound electron pairs lock together in a local quantum superposition, generating transient localized bound electron pairs and a concomitant opening of a pseudo-gap in the single-particle density of states. At low temperature, this pseudo-gap state transits via a first order hole doping induced phase transition into a superconducting state in which the localized transient bound electron pairs get spatially phase correlated. The mechanism driving that transition is a phase separation between two phases having different relative densities of bound and unbound electron pairs, which is reminiscent of the physics of ⁴He-³He mixtures.
Keywords
EN
Year
Volume
127
Issue
2
Pages
176-184
Physical description
Dates
published
2015-02
References
  • [1] J. Ranninger, arXiv: 1207.6911
  • [2] H. Kamerlingh-Onnes, Acad. van Wettenschappen (Amsterdam) B 14, 113 (1911)
  • [3] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.106.162
  • [4] P. Morel, P.W. Anderson, Phys. Rev. 125, 1236 (1962), doi: 10.1103/PhysRev.125.1263
  • [5] D. Pines, Ph. Nozieres, The Theory of Quantum Liquids, Benjamin, New York 1966
  • [6] D.A. Kirzhnits, Usp. Fiz. Nauk 119, 357 (1976)
  • [7] O.V. Dolgov, D.A. Kirzhnits, E.G. Maksimov, Rev. Mod. Phys. 53, 81 (1981), doi: 10.1103/RevModPhys.53.81
  • [8] V.L. Ginzburg, D.A. Kirszhnits, High Temperature Superconductivity, Consultant Bureau, New York 1982
  • [9] B.T. Matthias, E. Corenzwit, A.S. Cooper, L.D. Longinotti, Proc. Natl. Acad. Sci. 68, 56 (1971)
  • [10] J.M. Vandenberg, B.T. Matthias, Science 198, 194 (1977), doi: 10.1126/science.198.4313.1941
  • [11] J.R. Galaver, Appl. Phys. Lett. 23, 480 (1973), doi: 10.1063/1.1654967
  • [12] S. Lakkis, C. Schlenker, B.K. Chakraverty, R. Buder, M. Marezzio, Phys. Rev. B 14, 1429 (1976), doi: 10.1103/PhysRevB.14.1429
  • [13] A.S. Alexandrov, J. Ranninger, Phys. Rev. B 23, 1796 (1981), doi: 10.1103/PhysRevB.23.1796
  • [14] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990), doi: 10.1103/RevModPhys.62.113
  • [15] V.J. Emery, S.A. Kivelson, Nature (London) 374, 434 (1995), doi: 10.1038/374434a0
  • [16] B.K. Chakraverty, J. Ranninger, D. Feinberg, Phys. Rev. Lett. 81, 433 (1998), doi: 10.1103/PhysRevLett.81.433
  • [17] G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986), doi: 10.1007/BF01303701
  • [18] J.F. Schooly, W.R. Hosler, E. Ambler, J.H. Becker, M.L. Cohen, C.S. Koonce, Phys. Rev. Lett. 14, 305 (1965), doi: 10.1103/PhysRevLett.14.305
  • [19] R.J. Tainsh, C. Abdrikidis, Solid State Commun. 60, 517 (1986), doi: 10.1016/0038-1098(86)90729-5
  • [20] D. Eagles, Phys. Rev. 186, 456 (1969), doi: 10.1103/PhysRev.186.456
  • [21] A.J. Leggett, J. Phys. C7 (France) 41, 19 (1980), doi: 10.1051/physcol:1980704
  • [22] Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, Gang Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, X.H. Yu, Phys. Rev. Lett. 62, 2317 (1989), doi: 10.1103/PhysRevLett.62.2317
  • [23] P.W. Anderson, Science 235, 1196 (1987), doi: 10.1126/science.235.4793.1196
  • [24] E. Altman, A. Auerbach, Phys. Rev. B 65, 104508 (2002), doi: 10.1103/PhysRevB.65.104508
  • [25] J. Ranninger, S. Robaszkiewicz, Physica 135B, 468 (1985), doi: 10.1016/0378-4363(85)90533-9
  • [26] J. Ranninger, R. Micnas, S. Robaszkiewicz, Ann. Phys. (France) 13, 455 (1989), doi: 10.1051/anphys:01988001305045500
  • [27] J. Ranninger, J.-M. Robin, M. Eschrig, Phys. Rev. Lett. 74, 4027 (1995), doi: 10.1103/PhysRevLett.74.4027
  • [28] T. Domanski, J. Ranninger, Phys. Rev. Lett. 91, 255301 (2003), doi: 10.1103/PhysRevLett.91.255301
  • [29] P. Devillard, J. Ranninger, Phys. Rev. Lett. 84, 5200 (2000), doi: 10.1103/PhysRevLett.84.5200
  • [30] C.J. Zhang, H. Oyanagi, Phys. Rev. B 79, 064521 (2009), doi: 10.1103/PhysRevB.79.064521
  • [31] D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G.D. Gu, J.M. Tranquada, Nature 440, 1170 (2006), doi: 10.1038/nature04704
  • [32] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis, Science 315, 1380 (2007), doi: 10.1126/science.1138584
  • [33] Y. Kohsaka, Nature (London) 454, 1072 (2008), doi: 10.1038/nature07243
  • [34] J. Lee, K. Fujita, A.R. Schmidt, Chung Koo Kim, H. Eisaki, S. Uchida, J.C. Davis, Science 325, 1099 (2009), doi: 10.1126/science.1176369
  • [35] J. Lee, K. Fujita, K. McElroy, J.A. Slezak, M. Wang, Y. Aiura, H. Bando, M. Ishikado, T. Masui, J.-X. Zhu, A.V. Balatsky, H. Eisaki, S. Uchida, J.C. Davis, Nature 442, 546 (2006), doi: 10.1038/nature04973
  • [36] D. Rubio-Temprano, J. Mesot, S. Janssen, K. Conder, A. Furrer, H. Mutka, K.A. Müller, Phys. Rev. Lett. 84, 1990 (2000), doi: 10.1103/PhysRevLett.84.1990
  • [37] P.S. Häfliger, A. Podlesnyak, K. Conder, A. Furrer, Eur. Phys. Lett. 73, 260 (2006), doi: 10.1209/epl/i2005-10373-x
  • [38] R.B. Laughlin, D. Pines, Proc. Natl. Acad. Sci. USA 97, 28 (2000), doi: 10.1073/pnas.97.1.28
  • [39] P.W. Anderson, Science 288, 480 (2000), doi: 10.1126/science.288.5465.480
  • [40] L. Pauling, Nature of the Chemical Bond, Cornell University Press, Ithaca, New York 1960, p. 394
  • [41] E.V.L. de Mello, J. Ranninger, Phys. Rev. B 55, 14872 (1997), doi: 10.1103/PhysRevB.55.14872
  • [41a] E.V.L. de Mello, J. Ranninger, Phys. Rev. B 58, 9098 (1998), doi: 10.1103/PhysRevB.58.9098
  • [42] H. Feshbach, Ann. Phys. (New York) 5, 357 (1958), doi: 10.1016/0003-4916(58)90007-1
  • [43] T. Domanski, J. Ranninger, J.M. Robin, Solid State Commun. 105, 473 (1998), doi: 10.1016/S0038-1098(97)10155-7
  • [44] J. Ranninger, A. Romano, Phys. Rev. B 82, 054508 (2010), doi: 10.1103/PhysRevB.82.054508
  • [45] M. Cuoco, C. Noce, J. Ranninger, A. Romano, Phys. Rev. B 67, 224504 (2005), doi: 10.1103/PhysRevB.67.224504
  • [46] M. Cuoco, J. Ranninger, Phys. Rev. B 70, 104509 (2004), doi: 10.1103/PhysRevB.70.104509
  • [47] F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994), doi: 10.1002/andp.19945060203
  • [48] J. Ranninger, T. Domanski, Phys. Rev. B 81, 014514 (2010), doi: 10.1103/PhysRevB.81.014514
  • [49] T. Stauber, J. Ranninger, Phys. Rev. Lett. 99, 045301 (2007), doi: 10.1103/PhysRevLett.99.045301
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n2006kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.