Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 1 | 93-95

Article title

New Method to Calculate Spatial Distribution of Acousto-Optic Figure of Merit in Crystals

Content

Title variants

Languages of publication

EN

Abstracts

EN
We propose a novel method to calculate acousto-optic figure of merit in crystals. Calculations are performed in laboratory coordinate system where Z'-axis is collinear with wave vector of ultrasound and the Fresnel equation is considered as an equation on the third component of refractive index vector. The method is applicable to both uniaxial and biaxial crystals. In this paper, we compared obtained values of acousto-optic figure of merit with values from literature data for uniaxial crystals such as paratellurite, lithium niobate, tellurium and for biaxial crystals such as lead and strontium tetraborates. Calculations in paratellurite were carried out for slow-shear acoustic wave propagating along [110] crystal axis. In lithium niobate crystal, we perform comparison with results for geometry of acousto-optic interaction where acoustic wave vector forms 88° angle with X crystal axis and 150.4° angle with Z crystal axis. In tellurium crystal, we investigate geometries applied in infrared deflectors. In SrB_4O_7 and PbB_4O_7 crystals we analyze acousto-optic characteristics of slow-shear mode propagating along [100] crystal axis. Spatial distributions of acousto-optic figure of merit and acoustic frequency for the mentioned acousto-optic interaction geometries are presented.

Keywords

Contributors

author
  • Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
author
  • Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia

References

  • [1] V.I. Balakshy, V.N. Parygin, L.E. Chirkov, Physical Fundamentals of Acousto-Optics, Radio i Svyaz, Moscow 1985 (in Russian)
  • [2] J. Xu, R. Stroud, Acousto-Optic Devices, Wiley, New York 1992
  • [3] A. Goutzoulis, D. Pape, Design and Fabrication of Acousto-Optic Devices, Marcel Dekker, New York 1994
  • [4] L.I. Mikheev, V.I. Balakshy, in: Physics and Mathematics, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki 155, 113 (2013) (in Russian) http://mi.mathnet.ru/eng/uzku1183
  • [5] V.I. Balakshy, V.B. Voloshinov, V.V. Solodovnikov, in: Proc. Scientific-Practical Conf. 'Fundamental and Applied Aspects of Innovative Projects at the Physics Department of MSU', Moscow 11, 173 (2009)
  • [6] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford 1984
  • [7] V.B. Voloshinov, V.I. Balakshy, L.A. Kulakova, N. Gupta, J. Opt. A Pure Appl. Opt. 10, 095002 (2008), doi: 10.1088/1464-4258/10/9/095002
  • [8] A.S. Andrushchak, E.M. Chernyhivsky, Z.Yu. Gotra, M.V. Kaidan, A.V. Kityk, N.A. Andrushchak, T.A. Maksymyuk, B.G. Mytsyk, W. Schranz, J. Appl. Phys. 108, 103118 (2010), doi: 10.1063/1.3510518
  • [9] O.A. Buryy, A.S. Andrushchak, O.S. Kushnir, S.B. Ubizskii, D.M. Vynnyk, J. Appl. Phys. 113, 083103 (2013), doi: 10.1063/1.4792304
  • [10] N. Uchida, N. Niizeki, Proc. IEEE 61, 8 (1973)
  • [11] N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 12 (1969), doi: 10.1063/1.1657275
  • [12] N.V. Polikarpova, P.V. Malneva, Bull. Russ. Acad. Sci. Phys. 76, 12 (2012), doi: 10.3103/S106287381212026X
  • [13] I. Martynyuk-Lototska, T. Dudok, O. Mys, R. Vlokh, Opt. Mater. 31, 4 (2009), doi: 10.1016/j.optmat.2008.06.020

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n125kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.