Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 1 | 93-95
Article title

New Method to Calculate Spatial Distribution of Acousto-Optic Figure of Merit in Crystals

Title variants
Languages of publication
We propose a novel method to calculate acousto-optic figure of merit in crystals. Calculations are performed in laboratory coordinate system where Z'-axis is collinear with wave vector of ultrasound and the Fresnel equation is considered as an equation on the third component of refractive index vector. The method is applicable to both uniaxial and biaxial crystals. In this paper, we compared obtained values of acousto-optic figure of merit with values from literature data for uniaxial crystals such as paratellurite, lithium niobate, tellurium and for biaxial crystals such as lead and strontium tetraborates. Calculations in paratellurite were carried out for slow-shear acoustic wave propagating along [110] crystal axis. In lithium niobate crystal, we perform comparison with results for geometry of acousto-optic interaction where acoustic wave vector forms 88° angle with X crystal axis and 150.4° angle with Z crystal axis. In tellurium crystal, we investigate geometries applied in infrared deflectors. In SrB_4O_7 and PbB_4O_7 crystals we analyze acousto-optic characteristics of slow-shear mode propagating along [100] crystal axis. Spatial distributions of acousto-optic figure of merit and acoustic frequency for the mentioned acousto-optic interaction geometries are presented.
  • Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
  • Department of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
  • [1] V.I. Balakshy, V.N. Parygin, L.E. Chirkov, Physical Fundamentals of Acousto-Optics, Radio i Svyaz, Moscow 1985 (in Russian)
  • [2] J. Xu, R. Stroud, Acousto-Optic Devices, Wiley, New York 1992
  • [3] A. Goutzoulis, D. Pape, Design and Fabrication of Acousto-Optic Devices, Marcel Dekker, New York 1994
  • [4] L.I. Mikheev, V.I. Balakshy, in: Physics and Mathematics, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki 155, 113 (2013) (in Russian)
  • [5] V.I. Balakshy, V.B. Voloshinov, V.V. Solodovnikov, in: Proc. Scientific-Practical Conf. 'Fundamental and Applied Aspects of Innovative Projects at the Physics Department of MSU', Moscow 11, 173 (2009)
  • [6] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford 1984
  • [7] V.B. Voloshinov, V.I. Balakshy, L.A. Kulakova, N. Gupta, J. Opt. A Pure Appl. Opt. 10, 095002 (2008), doi: 10.1088/1464-4258/10/9/095002
  • [8] A.S. Andrushchak, E.M. Chernyhivsky, Z.Yu. Gotra, M.V. Kaidan, A.V. Kityk, N.A. Andrushchak, T.A. Maksymyuk, B.G. Mytsyk, W. Schranz, J. Appl. Phys. 108, 103118 (2010), doi: 10.1063/1.3510518
  • [9] O.A. Buryy, A.S. Andrushchak, O.S. Kushnir, S.B. Ubizskii, D.M. Vynnyk, J. Appl. Phys. 113, 083103 (2013), doi: 10.1063/1.4792304
  • [10] N. Uchida, N. Niizeki, Proc. IEEE 61, 8 (1973)
  • [11] N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 12 (1969), doi: 10.1063/1.1657275
  • [12] N.V. Polikarpova, P.V. Malneva, Bull. Russ. Acad. Sci. Phys. 76, 12 (2012), doi: 10.3103/S106287381212026X
  • [13] I. Martynyuk-Lototska, T. Dudok, O. Mys, R. Vlokh, Opt. Mater. 31, 4 (2009), doi: 10.1016/j.optmat.2008.06.020
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.