Title variants
Languages of publication
Abstracts
Theoretical investigations of the influence of hydrogen contents on the electrical resistivity of amorphous metallic alloys have been carried out. We have made use of our method of calculations of the electrical resistivity of disordered systems based on the ground of Morgan-Howson-Saub and Evans models. Our method is fully quantum, includes multiple scattering effects and uses the scattering matrix operators for describing the electron-ion interactions. The model gives good agreement with experiment for many binary systems and should work for ternary systems as well, thus we performed calculations with hydrogen as one of the components of a ternary alloy. The results of our calculations show that the resistivity should increase with hydrogen concentration. Some experimental data confirm this predication.
Discipline
- 72.15.Qm: Scattering mechanisms and Kondo effect(see also 75.20.Hr Local moments in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions in magnetic properties and materials)
- 72.15.Rn: Localization effects (Anderson or weak localization)
- 72.15.Cz: Electrical and thermal conduction in amorphous and liquid metals and alloys
Journal
Year
Volume
Issue
Pages
1296-1298
Physical description
Dates
published
2014-12
received
2014-05-06
Contributors
author
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
References
- [1] W. Klement, R.H. Willens, P. Duwez, Nature 187, 869 (1960), doi: 10.1038/187869b0
- [2] Amorphous Metallic Alloys, Ed. F.E. Luborsky, Butterworths, London 1983
- [3] J.S. Dugdale, The Electrical Properties of Disordered Metals, Cambridge University Press, Cambridge (UK) 1995
- [4] Amorphous Materials: Research, Technology and Applications, Eds. J.R. Telle, N.A. Pearlstine, Nova Science Publishers, Hauppauge (USA) 2009
- [5] N. Eliaz, D. Eliezer, Metall. Mater. Trans. A 31A, 2517 (2000), doi: 10.1007/s11661-000-0196-x
- [6] V. Azhazha, A. Grib, G. Khadzhay, B. Merisov, A. Pugachov, Int. J. Hydrogen Energy 28, 415 (2003), doi: 10.1016/S0360-3199(02)00132-5
- [7] A. Narjis, A. El Kaaouachi, L. Limouny, S. Dlimi, A. Sybous, J. Hemine, R. Abdia, G. Biskupski, Physica B 406, 4155 (2011), doi: 10.1016/j.physb.2011.08.021
- [8] A. Narjis, A. El Kaaouachi, S. Dlimi, A. Sybous, L. Limouny, R. Abdia, G. Biskupski, Moroccan J. Condens. Matter 13, 103 (2011)
- [9] A. Narjis, A. El Kaaouachi, J. Hemine, A. Sybous, L. Limouny, S. Dlimi, R. Abdia, G. Biskupski, J. Mod. Phys. 3, 447 (2012), doi: 10.4236/jmp.2012.36061
- [10] A. Narjis, A. El Kaaouachi, A. Sybous, L. Limouny, S. Dlimi, A. Aboudihab, J. Hemine, R. Abdia, G. Biskupski, J. Mod. Phys. 3, 517 (2012), doi: 10.4236/jmp.2012.37070
- [11] A. Narjis, A. El Kaaouachi, S. Dlimi, A. Sybous, L. Limouny, G. Biskupski, Chin. J. Phys. 51, 593 (2013), doi: 10.6122/CJP.51.593
- [12] T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153 (1965), doi: 10.1080/14786436508211931
- [13] M. Ornat, A. Paja, J. Phys. Condens. Matter 20, 375102 (2008), doi: 10.1088/0953-8984/20/37/375102
- [14] R. Evans, D.A. Greenwood, P. Lloyd, Phys. Lett. 35A, 57 (1971), doi: 10.1016/0375-9601(71)90543-3
- [15] G.J. Morgan, M.A. Howson, K. Šaub, J. Phys. F Met. Phys. 15, 2157 (1985), doi: 10.1088/0305-4608/15/10/011
- [16] M. Ornat, A. Paja, Appl. Phys. A 102, 379 (2011), doi: 10.1007/s00339-010-6016-2
- [17] E. Esposito, H. Ehrenreich, C.D. Gelatt, Phys. Rev. B 18, 3913 (1978), doi: 10.1103/PhysRevB.18.3913
- [18] N.W. Ashcroft, D.C. Langreth, Phys. Rev. 159, 685 (1967), doi: 10.1103/PhysRev.156.685
- [19] C. van der Marel, W. van der Lugt, J. Phys. F Met. Phys. 10, 1177 (1980), doi: 10.1088/0305-4608/10/6/018
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n614kz