Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Hematite (α-Fe_{2}O_{3}) nanoparticles and hematite nanoparticles coated with polyvinylpyrrolidone (PVP) are synthesized chemically by co-precipitation. Prolysis and microemulsion methods respectively. An average size of nanoparticles (both coated and uncoated) was found by the broadening of the X-ray diffraction peaks using Scherrer's formula. It was found that coating reduced particle sizes. The attachment of the polymer on the surface of particles was confirmed by the Fourier transform infrared spectroscopy and thermogravimetric analysis. Optical ultraviolet/visible reflectance test also indicated the presence of PVP in coated nanohematites. In magnetic studies, it was observed that coating does not change main magnetic character of the α-Fe_{2}O_{3} nanoparticles however it reduces DC magnetization (as a function of applied field and temperature) to a considerable amount. Moreover it was observed that after coating Morin transition temperature T_{M} and its width ΔT_{M} shifts to lower values, which is another indication of size reduction.
Discipline
- 78.66.Qn: Polymers; organic compounds
- 78.67.Bf: Nanocrystals, nanoparticles, and nanoclusters
- 75.75.-c: Magnetic properties of nanostructures
- 75.47.Lx: Magnetic oxides
- 78.67.-n: Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures(for magnetic properties of nanostructures, see 75.75.-c; for electronic transport in nanoscale structures, see 73.63.-b; for mechanical properties of nanoscale systems, see 62.25.-g)
Journal
Year
Volume
Issue
Pages
1280-1287
Physical description
Dates
published
2014-12
received
2014-01-26
(unknown)
2014-11-06
Contributors
author
- Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan
author
- Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan
author
- Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan
References
- [1] C.P. Poole, F.J. Owens, Introduction to Nanotechnology, Cambridge University Press, Cambridge 2003
- [2] B. Bhushan, Springer Handbook of Nanotechnology, Springer, Berlin 2004, doi: 10.1007/978-3-642-02525-9
- [3] F. Sanchez, K. Sobolev, Constr. Build Mater. 24, 2060 (2010), doi: 10.1016/j.conbuildmat.2010.03.014
- [4] K.K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 3rd ed., Wiley.com (2012), doi: 10.1002/9781119941798
- [5] V.J. Mohanraj, Y. Chen, Tropic. J. Pharmaceut. Res. 5.1, 561 (2007), doi: 10.4314/tjpr.v5i1.14634
- [6] G. Schmid, Nanoparticles: from Theory to Application, 2nd ed., Wiley, Weinheim 2011, doi: 10.1080/10426914.2012.663137
- [7] S. Horikoshi, N. Serpone, Introduction to Nanoparticles, in Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, Wiley-VCH Verlag, Weinheim 2013, doi: 10.1002/9783527648122
- [8] S. Laurent, D. Forge, R.M. Port, A.C. Robic, L. Vander, R.N. Muller, Chem. Rev. 108, 2064 (2008), doi: 10.1021/cr068445e
- [9] S.F. Hasany, N.H. Abdurahman, A.R. Sunarti, R. Jose, Curr. Nanosci. 9, 561 (2013), doi: 10.2174/15734137113099990085
- [10] S.A. Teja, P. Koh, Prog. Cryst. Growth Character. Mater. 55.1, 22 (2009), doi: 10.1002/chin.201011219
- [11] S. Conroy, J.S.H. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60.11, 1252 (2008), doi: 10.1016/j.addr.2008.03.018
- [12] J.S. Weinstein, C.G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W.D. Rooney, E.A. Neuwelt, J. Cerebral Blood Flow Metabol. 30, 15 (2009), doi: 10.1038/jcbfm.2009.192
- [13] J.M. Perez, Nature Nanotechnol. 2.9, 535 (2007), doi: 10.1038/nnano.2007.282
- [14] L.D. Huber, Small 1.5, 482 (2005), doi: 10.1002/smll.200500006
- [15] P.D. Stevens, J. Fan, H.M. Gardimalla, M. Yen, Y. Gao, Org. Lett. 7, 2085 (2005), doi: 10.1021/ol050218w
- [16] K. Woo, J. Hong, S. Choi, H.W. Lee, J.P. Ahn, C.S. Kim, S.W. Lee, Chem. Mater. 16, 2814 (2004), doi: 10.1021/cm049552x
- [17] J. Mürbe, A. Rechtenbach, J. Töpfer, Mater. Chem. Phys. 110.2, 426 (2008), doi: 10.1016/j.matchemphys.2008.02.037
- [18] X. Liu, J. Shaw, J. Jiang, J. Bloemendal, P. Hesse, T. Rolph, X. Mao, Sci. China Earth Sci. 53, 1153 (2010), doi: 10.1007/s11430-010-0030-2
- [19] H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94, 449 (2005), doi: 10.1016/j.matchemphys.2005.05.005
- [20] C. Leuner, D. Jennifer, Europ. J. Pharmaceut. Biopharmaceut. 50, 47 (2000), doi: 10.1016/S0939-6411(00)00076-X
- [21] Nanotechnology in Biology and Medicine: Methods, Devices, and Applications, Ed. Tuan Vo-Dinh, Hindawi Publ. Co., 2008
- [22] Nanostructured Materials for Biomedical Applications, Eds. D.L. Shi, H.C. Gu, Hindawi Publ. Co., 2008
- [23] F. Bødker, M.F. Hansen, C. Bender Koch, K. Lefmann, S. Mørup, Phys. Rev. B 61, 6826 (2000), doi: 10.1103/PhysRevB.61.6826
- [24] D. Predoi, J. Nanomater. Biostruct. 2, 169 (2007)
- [25] I.V. Chernyshova, M.F. Hochella Jr., A.S. Madden, Phys. Chem. 9, 1736 (2007), doi: 10.1039/B618790K
- [26] R. Zboril, M. Mashian, D. Krausova, in: Mossbauer Spectroscopy in Material Sciences, Eds. M. Migleierine, D. Petridis, Kluwer Academic, Dordrecht 1999, p. 49
- [27] G. Cao, Nano-structures and Nano-materials, Imperial College Press, London 2004
- [28] X. Wang, L. Gao, H. Zheng, M. Ji, T. Shen, Z. Zhang, J. Cryst. Growth 269, 489 (2004), doi: 10.1016/j.jcrysgro.2004.05.081
- [29] N. Sahiner, N. Pekel, O. Guven, React. Funct. Polym. 39, 139 (1999), doi: 10.1016/S1381-5148(97)00150-8
- [30] A. Alquadarni, S. Annapoorni, S. Larnba, Eur. Phys. J. B 39, 19 (2004)
- [31] R. Skomsky, J.M.D. Coey, Permanent Magnetism, Institute of Physics Publ., 1999
- [32] X. Batlle, N. Pérez, P. Guardia, O. Iglesias, A. Labarta, F. Bartolomé, L.M. García, J. Bartolomé, A.G. Roca, M.P. Morales, C.J. Serna, J. Appl. Phys. 109, 07B524 (2011), doi: 10.1063/1.3559504
- [33] T.P. Raming, A.J.A. Winnubst, C.M. van Kats, A.P. Phillips, J. Coll. Interface Sci. 249, 346 (2002), doi: 10.1006/jcis.2001.8194
- [34] R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999), doi: 10.1016/S0304-8853(99)00347-9
- [35] L. Neel, Ann. Phys. (Paris) 249, 4 (1949)
- [36] C.C. Shull, W.A. Strauser, F.O. Wollan, Phys. Rev. B 1383, 333 (1951)
- [37] M.Z. Dang, D.C. Rancourt, J.E. Dutrizac, G. Lamarche, R. Provencher, Hyperf. Interact. 117, 271 (1998), doi: 10.1023/A:1012655729417
- [38] B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, Phys. Rev. B 79, 035108 (2009), doi: 10.1103/PhysRevB.79.035108
- [39] D.M. Sherman, in: Spectroscopic Characterization of Minerals and Their Surfaces, American Chemical Society, Washington (DC), 1990, p. 284, doi: 10.1021/bk-1990-0415.ch015
- [40] D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environm. Sci. 5, 6682 (2012), doi: 10.1039/C2EE00001F
- [41] R.M. Cornell, U. Schertmann, Iron Oxides: Properties and Characterization, VCH Publ., Weinheim 1991, doi: 10.1002/3527602097
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n611kz