PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 6 | 1275-1279
Article title

Research on the Spin-Hamiltonian Parameters and Local Structure for the Tetragonal Mo^{5+} Centers in CaWO_{4} Crystal

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The spin-Hamiltonian parameters (g factors g_{∥}, g_{⊥} and hyperfine structure constants A_{∥}(A), A_{⊥}(A), A_{∥}(B) and A_{⊥}(B), A(A) and A(B) belonging to isotopes ^{95}Mo^{5+} and ^{97}Mo^{5+}) of Mo^{5+} ion at the tetragonally-compressed tetrahedral W^{6+} site in CaWO_4 crystal are calculated from the high-order perturbation formulae based on the two-mechanism model, where besides the contributions to spin-Hamiltonian parameters due to the crystal-field mechanism concerning the crystal-field excited states in the extensively-applied crystal-field theory, those due to charge-transfer mechanism concerning charge-transfer excited states (which are omitted in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The calculations show that for the high-valence state d^{n} ions (e. g., Mo^{5+} considered) in crystals, the contributions due to charge-transfer mechanism should be taken into account in the studies of spin-Hamiltonian parameters. The local structure of Mo^{5+} center in CaWO_4 crystal due to the impurity-induced local lattice relaxation is estimated from the calculations. The results are discussed.
Keywords
EN
Year
Volume
126
Issue
6
Pages
1275-1279
Physical description
Dates
published
2014-12
received
2014-01-14
References
  • [1] A.A. Kaminskii, Laser Crystals: Their Physics and Properties, Springer-Verlag, Berlin 1981
  • [2] J.Y. Sun, Y.N. Sun, C. Cao, Z.G. Xia, H.Y. Du, Appl. Phys. B 111, 367 (2013), doi: 10.1007/s00340-013-5342-4
  • [3] K.G. Sharma, N.R. Singh, J. Rare Earths 30, 310 (2012), doi: 10.1016/S1002-0721(12)60043-X
  • [4] J.S. Liao, B. Qiu, H.R. Wen, J.L. Chen, W.X. You, L.B. Liu, J. Alloys Comp. 487, 758 (2009), doi: 10.1016/j.jallcom.2009.08.068
  • [5] V.V. Laguta, A. Vedda, D.Di. Martino, M. Martino, M. Nikl, E. Mihokova, J. Rosa, Y. Usuki, Phys. Rev. B 71, 235108 (2005), doi: 10.1103/PhysRevB.71.235108
  • [6] E. Baibekov, I. Kurkin, M. Gufurov, B. Endeward, R. Rakhmatullin, G. Mamin, J. Magn. Reson. 209, 61 (2011), doi: 10.1016/j.jmr.2010.12.015
  • [7] C.A. Morrison, R.P. Leavitt, in: Handbook on the Physics and Chemistry of Rare Earths, Eds. K.A. Gschneidner, Jr., L. Eyring, Vol. 5, North-Holland Publishing Company, Amsterdam 1982, Chapter 46
  • [8] I. Trabelsi, M. Dammak, R. Maalej, M. Kamoun, Physica B 406, 315 (2011), doi: 10.1016/j.physb.2010.10.012
  • [9] S. Mahlik, E. Cavalli, M. Bettinelli, M. Grinberg, Radiat. Meas. 56, 1 (2013), doi: 10.1016/j.radmeas.2013.03.019
  • [10] T.H. Yeom, J. Korean. Phys. Soc. 47, 681 (2005)
  • [11] Z. Sroubek, K. Zdansky, J. Chem. Phys. 44, 3078 (1966), doi: 10.1063/1.1727182
  • [12] G.H. Azarbayejani, A.L. Merlo, Phys. Rev. 137, A489 (1965), doi: 10.1103/PhysRev.137.A489
  • [13] J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964
  • [14] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970
  • [15] J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Clarendon Press, Oxford 1990
  • [16] J.A. Arambura, M. Moreno, Solid State Commun. 62, 513 (1987), doi: 10.1016/0038-1098(87)91110-0
  • [17] W.C. Zheng, W.Q. Yang, Y. Mei, Mol. Phys. 107, 2245 (2009), doi: 10.1080/00268970903263920
  • [18] Y. Mei, W.C. Zheng, Y.G. Yang, H.G. Liu, Physica B 407, 4365 (2012), doi: 10.1016/j.physb.2012.07.035
  • [19] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam 1984
  • [20] M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992), doi: 10.1103/PhysRevB.46.8974
  • [21] B.R. McGarvey, J. Phys. Chem. 71, 51 (1967), doi: 10.1021/j100860a007
  • [22] E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963), doi: 10.1063/1.1733573
  • [23] E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967), doi: 10.1063/1.1712084
  • [24] W.C. Zheng, Physica B 215, 255 (1995), doi: 10.1016/0921-4526(95)00408-2
  • [25] R.D. Shannon, Acta Crystallogr. A 32, 751 (1976), doi: 10.1107/S0567739476001551
  • [26] R.M. Hazen, L.W. Finger, J.W.E. Mariathasan, J. Phys. Chem. Solids 46, 253 (1985), doi: 10.1016/0022-3697(85)90039-3
  • [27] R. Valiente, F. Rodriguez, M.T. Barriuso, C. Sousa, C. de Graaf, T.A. Arambura, M. Moreno, High Press. Res. 22, 475 (2002), doi: 10.1080/08957950212796
  • [28] J.A. Arambura, M. Moreno, A. Bencini, Chem. Phys. Lett. 140, 462 (1987), doi: 10.1016/0009-2614(87)80469-4
  • [29] Y. Mei, W.C. Zheng, H.G. Liu, Physica B 430, 27 (2013), doi: 10.1016/j.physb.2013.08.021
  • [30] D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989), doi: 10.1088/0034-4885/52/6/002
  • [31] B.G. Wybourne, Spectroscopic Properties of Rare Earth, Wiley, New York 1965
  • [32] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys. Condens. Matter 16, 348 (2004), doi: 10.1088/0953-8984/16/20/018
  • [33] W.C. Zheng, W. Fang, Y. Mei, J. Appl. Phys. 101, 053911 (2007), doi: 10.1063/1.2472647
  • [34] W.L. Feng, W.Q. Yang, W.C. Zheng, X.M. Li, J. Alloys Comp. 507, 498 (2010), doi: 10.1016/j.jallcom.2010.07.217
  • [35] W.C. Zheng, Y. Mei, W.Q. Yang, Philos. Mag. 28, 1621 (2009), doi: 10.1080/14786430903002392
  • [36] W.L. Yu, M.G. Zhao, Phys. Rev. B 37, 9254 (1988), doi: 10.1103/PhysRevB.37.9254
  • [37] M. Atanasov, T.C. Brunold, H.U. Gudel, C. Daul, Inorg. Chem. 37, 4589 (1998), doi: 10.1021/ic971014h
  • [38] V. Havlicek, P. Novak, B.V. Mill, Phys. Status Solidi B 64, K19 (1974), doi: 10.1002/pssb.2220640152
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n610kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.