Journal
Article title
Title variants
Languages of publication
Abstracts
Thermo-optical properties of hydrogenated amorphous carbon nitride layers (a-C:N:H) deposited on crystalline silicon by plasma assisted chemical vapour deposition were studied. The layers were characterized by the Fourier transform infrared spectroscopy and their chemical composition, i.e. [N]/[C] ratio, was determined by energy dispersive X-ray technique. The optic measurements were made by spectroscopic ellipsometer Wollam M2000 equipped with a heated vacuum chamber. The measurements of ellipsometric angles were carried out during heating the sample from room temperature to 300°C. Refractive index, extinction coefficient and the layer thicknesses were calculated by fitting the model of the layer to the ellipsometric data. The results confirm that at about 23°C the layer properties are changed. The measured thermo-optical parameters, dn/dT and dk/dT, show abrupt change from negative to positive values which can be explained by structure graphitization. Simultaneously, the bandgap decreases from 2.5 to 0.7 eV and the layer thickness drops to about 50% of the initial value.
Discipline
- 78.30.Ly: Disordered solids
- 81.05.U-: Carbon/carbon-based materials(for carbon-based superconductors, see 74.70.Wz)
- 78.20.Ci: Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)
- 81.15.Gh: Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)(for chemistry of MOCVD, see 82.33.Ya in physical chemistry and chemical physics)
- 07.60.Fs: Polarimeters and ellipsometers
- 78.20.-e: Optical properties of bulk materials and thin films(for optical properties related to materials treatment, see 81.40.Tv; for optical materials, see 42.70-a; for optical properties of superconductors, see 74.25.Gz; for optical properties of rocks and minerals, see 91.60.Mk; for optical properties of specific thin films, see 78.66.-w)
- 78.20.N-: Thermo-optic effects
Journal
Year
Volume
Issue
Pages
1241-1245
Physical description
Dates
published
2014-12
received
2014-04-03
Contributors
author
- AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
author
- Cracow Technical University, Podchor k ażych 1, 30-084 Kraków, Poland
author
- AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
author
- AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
References
- [1] Y. Liu, M.L. Cohen, Science 245, 841 (1989), doi: 10.1126/science.245.4920.841
- [2] Y.S. Zou, Y.F. Wu, R.F. Huang, C. Sun, L.S. Wen, Vacuum 83, 1406 (2009), doi: 10.1016/j.vacuum.2009.04.072
- [3] D.F. Wang, K. Kato, N. Umehara, Surf. Coat. Technol. 123, 177 (2000), doi: 10.1016/S0257-8972(99)00509-5
- [4] C.A. Charitidis, Int. J. Ref. Metal. Hard Mater. 28, 51 (2010), doi: 10.1016/j.ijrmhm.2009.08.003
- [5] H.R. Aryal, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno, Diam. Relat. Mater. 15, 1906 (2006), doi: 10.1016/j.diamond.2006.09.005
- [6] N. Dwivedi, S. Kumar, H.K. Malik, C.M.S. Rauthan, O.S. Panwar, Mater. Chemistry & Physics 130, 775 (2011), doi: 10.1016/j.matchemphys.2011.07.060
- [7] S.R.P. Silva, J. Robertson, G.A.J. Amaratunga, B. Rafferty, L.M. Brown, J. Schwan, D.F. Franceschini, G. Mariotto, J. Appl. Phys. 81, 2626 (1997), doi: 10.1063/1.363927
- [8] C. Casiraghi, J. Robertson, A.C. Ferrari, Mater. Today 10, 44 (2007), doi: 10.1016/S1369-7021(06)71791-6
- [9] A.C. Ferrari, S.E. Rodil, J. Robertson, Phys. Rev. B 67, 155306 (2003), doi: 10.1103/PhysRevB.67.155306
- [10] R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam 1995
- [11] K. Marszalek, P. Winkowski, J. Jaglarz, Mater. Sci.-Poland 32, 80 (2014), doi: 10.2478/s13536-013-0156-y
- [12] Complete EASE™ Data Analysis Manual, v.4.05, J.A. Woollam Co. Inc., 2009 http://crn2.3it.usherbrooke.ca/guide_sb/appareils/Ellipsometre/CompleteEASE%20Manual.pdf
- [13] F. Urbach, Phys. Rev. 92, 1324 (1953), doi: 10.1103/PhysRev.92.1324
- [14] S.V. Kartalopoulos, Introduction to DWDM Technology, SPIE Press, Bellingham (WA) 2000, p. 141
- [15] P. Jedrzejowski, J. Cizek, A. Amassian, J.E. Klemberg-Sapieha, J. Vlcek, L. Martinu, Thin Solid Films 447-448, 201 (2004), doi: 10.1016/S0040-6090(03)01057-5
- [16] K. Kyziol, S. Jonas, K. Tkacz-Smiech, K. Marszalek, Vacuum 82, 998 (2008), doi: 10.1016/j.vacuum.2008.01.008
- [17] Y. Awad, M.A.E. Khakani, C. Aktik, J. Mouine, N. Camire, M. Lessard, M. Scarlete, Surf. Coat. Technol. 204, 539 (2009), doi: 10.1016/j.surfcoat.2009.08.032
- [18] K.B. Sundarm, J. Alizadeh, Thin Solid Films 370, 151 (2000), doi: 10.1016/S0040-6090(00)00956-1
- [19] J.H. Kaufman, S. Metin, D.D. Saperstein, Phys. Rev. B 39, 13053 (1989), doi: 10.1103/PhysRevB.39.13053
- [20] S.E. Rodil, N.A. Morrison, J. Robertson, W.I. Milne, Phys. Status Solidi A 174, 25 (1999), doi: 10.1002/(SICI)1521-396X(199907)174:1%3C25::AID-PSSA25%3E3.0.CO;2-3
- [21] G. Lazar, K. Zellamaa, I. Vascan, M. Stamate, I. Lazar, I. Rusu, J. Optoel. Adv. Mater. 7, 647 (2005)
- [22] A.C. Ferrari, S.E. Rodil, J. Robertson, Diam. Relat. Mater. 12, 905 (2003), doi: 10.1016/S0925-9635(02)00370-9
- [23] S.E. Rodil, A.C. Ferrari, J. Robertson, S. Muhl, Thin Solid Films 420, 122 (2002), doi: 10.1016/S0040-6090(02)00791-5
- [24] J. Jaglarz, M. Kepinska, J. Sanetra, Opt. Mater. 36, 1275 (2014), doi: 10.1016/j.optmat.2014.02.015
- [25] A. Ibrahim, S.K.J. Al-Ani, Czech. J. Phys. 44, 785 (1994), doi: 10.1007/BF01700645
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n604kz