Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We study the hybrid Benjamin-Bona-Mahoney-Burgers equation with dual power-law nonlinearity. Three different techniques - the ansatz method, Lie-symmetry analysis and the (G'/G)-expansion method - are used to find shock wave solutions. Several constraint conditions naturally emerge that guarantee the existence of shock waves. We discuss the nature of the solutions generated by the different methods.
Discipline
Journal
Year
Volume
Issue
Pages
1221-1225
Physical description
Dates
published
2014-12
received
2014-04-22
Contributors
author
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing-100081, People's Republic of China
author
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing-100081, People's Republic of China
author
- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
author
- Applied and Industrial Mathematics Research Group, School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, ACT 2600, Australia
author
- Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA
- Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah-21589, Saudi Arabia
References
- [1] R. Abazari, Rom. Rep. Phys. 66, 286 (2014)
- [2] M. Antonova, A. Biswas, Commun. Nonlin. Sci. Num. Simul. 14, 734 (2009), doi: 10.1016/j.cnsns.2007.12.004
- [3] L. Girgis, A. Biswas, Appl. Math. Comput. 216, 2226 (2010), doi: 10.1016/j.amc.2010.03.056
- [4] P. Razborova, H. Triki, A. Biswas, Ocean Eng. 63, 1 (2013), doi: 10.1016/j.oceaneng.2013.01.014
- [5] G.-W. Wang, T.Z. Xu, S. Johnson, A. Biswas, Astrophys. Space Sci. 349, 317 (2014), doi: 10.1007/s10509-013-1659-z
- [6] H. Zhao, Chaos Solitons Fractals 36, 1283 (2008), doi: 10.1016/j.chaos.2006.07.047
- [7] D.J. Huang, D.S. Li, H.Q. Zhang, Chaos Solitons Fractals 31, 586 (2007), doi: 10.1016/j.chaos.2005.10.007
- [8] A. Senthilkumar, Turk. J. Math. 37, 652 (2013), doi: 10.3906/mat-1203-35
- [9] E. Yomba, Phys. Lett. A 372, 1048 (2008), doi: 10.1016/j.physleta.2007.09.003
- [10] L.-H. Zhang, Appl. Math. Comput. 208, 144 (2009), doi: 10.1016/j.amc.2008.11.020
- [11] H. Triki, Z. Jovanoski, A. Biswas, Appl. Math. Inf. Sci. 8, 113 (2014), doi: 10.12785/amis/080113
- [12] H. Triki, Z. Jovanoski, A. Biswas, Ind. J. Phys. 88, 71 (2014), doi: 10.1007/s12648-013-0380-7
- [13] R. Cherniha, V. Davydovych, J. Phys. A Math. Theor. 46, 185204 (2013), doi: 10.1088/1751-8113/46/18/185204
- [14] M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008), doi: 10.1016/j.physleta.2007.07.051
- [15] D.R. Rowland, Z. Jovanoski, Phys. Rev. B 54, 13484 (1996), doi: 10.1103/PhysRevB.54.13484
- [16] X.-J. Miao, Z.-Y. Zhang, Commun. Nonlin. Sci. Num. Simulat. 16, 4257 (2011), doi: 10.1016/j.cnsns.2011.03.032
- [17] C. Bai, Phys. Lett. A 288, 191 (2001), doi: 10.1016/S0375-9601(01)00522-9
- [18] A.-M. Wazwaz, Math. Comp. Simulat. 72, 1 (2006), doi: 10.1016/j.matcom.2006.03.002
- [19] I.E. Inan, Phys. Lett. A 371, 90 (2007), doi: 10.1016/j.physleta.2007.06.009
- [20] E.J. Parkes, Appl. Math. Comput. 217, 1749 (2010), doi: 10.1016/j.amc.2009.11.037
- [21] E.J. Parkes, Appl. Math. Comput. 217, 1759 (2010), doi: 10.1016/j.amc.2010.03.073
- [22] N.A. Kudryashov, Commun. Nonlin. Sci. Num. Simulat. 14, 3507 (2009), doi: 10.1016/j.cnsns.2009.01.023
- [23] N.A. Kudryashov, Appl. Math. Comput. 217, 1755 (2010), doi: 10.1016/j.amc.2010.03.071
- [24] Z.-Y. Yan, Int. J. Mod. Phys. C 14, 225 (2003), doi: 10.1142/S0129183103004383
- [25] Z.-Y. Yan, Comp. Phys. Commun. 148, 30 (2003), doi: 10.1016/S0010-4655(02)00465-4
- [26] S.A. Khuri, Chaos Solitons Fractals 20, 1037 (2004), doi: 10.1016/j.chaos.2003.09.042
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n601kz