PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1171-1173
Article title

Application of the Dot-Ring Nanostructure to Control Electrical Transport in the Coulomb Blockade Regime

Content
Title variants
Languages of publication
EN
Abstracts
EN
Transport properties of a two-dimensional nanostructure composed of a quantum dot surrounded by a quantum ring (dot-ring nanostructure), are discussed. This complex system is a highly controllable object. Conduction through dot-ring nanostructure depends crucially on the coupling strength of its states to the electrodes, which is related to the spatial distribution of the electron's wave functions in dot-ring nanostructure. This distribution can be strongly modified, e.g., by the electrical gating so that the ground and excited states move between the inner dot and the outer ring. In this paper we show that this property can be used to control single-electron DC current through dot-ring nanostructure in the Coulomb blockade regime so that it can be used as a single electron transistor.
Keywords
EN
Year
Volume
126
Issue
5
Pages
1171-1173
Physical description
Dates
published
2014-11
References
  • [1] R. Hanson, D.D. Awschalom, Nature 453, 1043 (2008), doi: 10.1038/nature07129
  • [2] R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007), doi: 10.1103/RevModPhys.79.1217
  • [3] S. Amasha, K. MacLean, P. Iuliana, D.M. Zumbühl, M.A. Kastner, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 100, 046803 (2008), doi: 10.1103/PhysRevLett.100.046803
  • [4] C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Nanotechnology 22, 185602 (2011), doi: 10.1088/0957-4484/22/18/185602
  • [5] E. Zipper, M. Kurpas, M.M. Maśka, New J. Phys. 14, 093029 (2012), doi: 10.1088/1367-2630/14/9/093029
  • [6] M. Kurpas, E. Zipper, M.M. Maśka, in: Physics of Quantum Rings, Ed. V.M. Fomin, Springer, 2014, p. 455, doi: 10.1007/978-3-642-39197-2_18
  • [7] B. Szafran, F.M. Peeters, S. Bednarek, Phys. Rev. B 70, 125310 (2004), doi: 10.1103/PhysRevB.70.125310
  • [8] A. Fuhrer, S. Lscher, T. Ihn, T. Henzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 413, 822 (2001), doi: 10.1038/35101552
  • [9] T. Mano, T. Kuroda, K. Mitsuishi, M. Yamagiwa, X.-J. Guo, K. Furuya, K. Sakoda, N. Koguchi, J. Cryst. Growth 301, 740 (2007), doi: 10.1016/j.jcrysgro.2006.11.216
  • [9a] T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, N. Koguchi, Phys. Rev. B 72, 20530 (2005), doi: 10.1103/PhysRevB.72.205301
  • [10] N.B. Zhitenev, M. Brodsky, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Science 285, 715 (1999), doi: 10.1126/science.285.5428.715
  • [11] R. Hanson, I.T. Vink, D.P. DiVincenzo, L.M.K. Vandersypen, J.M. Elzerman, L.H. Willems van Beveren, L.P. Kouwenhoven, in: Proc. 39th Rencontres de Moriond, 2004
  • [12] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961), doi: 10.1103/PhysRevLett.6.57
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n534kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.