PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1134-1136
Article title

Mathematical Structure of Bosonic and Fermionic Jack States and Their Application in Fractional Quantum Hall Effect

Content
Title variants
Languages of publication
EN
Abstracts
EN
Fractional quantum Hall effect is a remarkable behaviour of correlated electrons, observed exclusively in two dimensions, at low temperatures, and in strong magnetic fields. The most prominent fractional quantum Hall state occurs at Landau level filling factor ν = 1/3 and it is described by the famous Laughlin wave function, which (apart from the trivial Gaussian factor) is an example of Jack polynomial. Fermionic Jack polynomials also describe another pair of candidate fractional quantum Hall states: Moore-Read and Read-Rezayi states, believed to form at the ν = 1/2 and 3/5 fillings of the second Landau level, respectively. Bosonic Jacks on the other hand are candidates for certain correlated states of cold atoms. We examine here a continuous family of fermionic Jack polynomials whose special case is the Laughlin state as approximate wave functions for the 1/3 fractional quantum Hall effect.
Keywords
EN
Contributors
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Physics, Pennsylvania State University, University Park PA, 16802, USA
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
References
  • [1] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)
  • [1a] J.K. Jain, Composite Fermions, Cambridge University Press, Cambridge 2007
  • [2] J.J. Quinn, A. Wójs, J. Phys. Condens. Matter 12, R265 (2000)
  • [2a] J.J. Quinn, A. Wójs, K.-S. Yi, G. Simion, Phys. Rep. 481, 29 (2009)
  • [3] H. Jack, Proc. R. Soc. Edin. Sect. A 69, 1 (1970/1971)
  • [4] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)
  • [5] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)
  • [6] N. Read, E.H. Rezayi, Phys. Rev. B 59, 8084 (1999)
  • [7] F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983)
  • [8] R. Stanley, Adv. Math. 77, 76 (1988)
  • [9] K. Sogo, J. Math. Phys. 35, 2282 (1994)
  • [9a] L. Lapointe, A. Lascoux, J. Morse, Elec. J. Combin. N1, 7 (2000)
  • [9b] L. Lapointe, A. Lascoux, J. Morse, Int. Math. Res. Notices 18, 957 (1998)
  • [10] B.A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009)
  • [11] R. Thomale, B. Estienne, N. Regnault, B.A. Bernevig, Phys. Rev. B 84, 045127 (2011)
  • [12] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008)
  • [12a] Phys. Rev. B 77, 184502 (2008)
  • [12b] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011)
  • [13] J.J. Quinn, A. Wójs, Physica E 6, 1 (2000)
  • [13a] A. Wójs, J.J. Quinn, Solid State Commun. 108, 493 (1998)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n523kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.