Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1110-1112

Article title

Desorption of Gasses Induced by Ferroelectric Transition in SbSI Nanowires

Content

Title variants

Languages of publication

EN

Abstracts

EN
For the first time the thermal desorption of H_2, N_2, O_2 and CO_2 is presented for antimony sulfoiodide (SbSI) xerogel made up of large quantity nanowires. The desorption has been observed near ferroelectric phase transition established at T_{c}=293.0(2) K. The Sievert measurements have shown that the hydrogen uptake is linear function of H_2 pressure (when p < 1.1×10^5 Pa). The hydrogen storage density in SbSI gel amounted 1.24× 10^{-2} wt% (for p = 1.08×10^5 Pa at room temperature).

Keywords

Contributors

author
  • Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
  • Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
  • Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
  • Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
  • Department of Materials Science, Silesian University of Technology, Z. Krasi«skiego 8, 40-019 Katowice, Poland

References

  • [1] D. Li, M.H. Zhao, J. Garra, A.M. Kolpak, A.M. Rappe, D.A. Bonnell, J.M. Vohs, Nature Mater. 7, 473 (2008), doi: 10.1038/nmat2198
  • [2] A.L. Cabrera, F. Vargas, R.A. Zarate, J. Phys. Chem. Solids 55, 1303 (1994), doi: 10.1016/0022-3697(94)90213-5
  • [3] A. Starczewska, M. Nowak, P. Szperlich, B. Toroń, K. Mistewicz, D. Stróż, J. Szala, Sensor. Actuat. A-Phys. 183, 34 (2012), doi: 10.1016/j.sna.2012.06.009
  • [4] M. Nowak, K. Mistewicz, A. Nowrot, P. Szperlich, M. Jesionek, A. Starczewska, Sensor. Actuat. A-Phys. 210, 32 (2014), doi: 10.1016/j.sna.2014.02.004
  • [5] M. Nowak, A. Nowrot, P. Szperlich, M. Jesionek, M. Kępińska, A. Starczewska, K. Mistewicz, D. Stróż, J. Szala, T. Rzychoń, E. Talik, R. Wrzalik, Sensor. Actuat. A-Phys. 210, 119 (2014), doi: 10.1016/j.sna.2014.02.012
  • [6] M. Nowak, P. Szperlich, Ł. Bober, J. Szala, G. Moskal, D. Stróż, Ultrason. Sonochem. 15, 709 (2008), doi: 10.1016/j.ultsonch.2007.09.003
  • [7] T.P. Blach, E.MacA. Grey, J. Alloys Comp. 446-447, 692 (2007), doi: 10.1016/j.jallcom.2006.12.061
  • [8] K. Toyoda, Ferroelectrics 69, 201 (1986), doi: 10.1080/00150198608008193
  • [9] P. Szperlich, M. Nowak, Ł. Bober, J. Szala, D. Stróż, Ultrason. Sonochem. 16, 398 (2009), doi: 10.1016/j.ultsonch.2008.09.001
  • [10] K. Ishikawa, W. Tomoda, K. Toyoda, J. Cryst. Growth 69, 399 (1984), doi: 10.1016/0022-0248(84)90348-8
  • [11] W.J. Merz, R. Nitsche, Izv. Akad. Nauk SSSR Ser. Fiz. 28, 681 (1964)
  • [12] Yu.V. Popik, V.N. Zhikharev, V.V. Betsa, Fiz. Tverd. Tela 24, 486 (1982)
  • [13] R.V. Wang, D.D. Fong, F. Jiang, M.J. Highland, P.H. Fuoss, C. Thompson, A.M. Kolpak, J.A. Eastman, S.K. Streiffer, A.M. Rappe, G.B. Stephenson, Phys. Rev. Lett. 102, 047601 (2009), doi: 10.1103/PhysRevLett.102.047601
  • [14] M.M. Shaijumon, S. Ramaprabhu, Chem. Phys. Lett. 374, 513 (2003), doi: 10.1016/S0009-2614(03)00741-3

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n515kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.