Journal
Article title
Title variants
Languages of publication
Abstracts
For the first time the thermal desorption of H_2, N_2, O_2 and CO_2 is presented for antimony sulfoiodide (SbSI) xerogel made up of large quantity nanowires. The desorption has been observed near ferroelectric phase transition established at T_{c}=293.0(2) K. The Sievert measurements have shown that the hydrogen uptake is linear function of H_2 pressure (when p < 1.1×10^5 Pa). The hydrogen storage density in SbSI gel amounted 1.24× 10^{-2} wt% (for p = 1.08×10^5 Pa at room temperature).
Discipline
- 68.43.-h: Chemisorption/physisorption: adsorbates on surfaces
- 77.84.-s: Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials(for nonlinear optical materials, see 42.70.Mp; for dielectric materials in electrochemistry, see 82.45.Un)
- 68.43.Vx: Thermal desorption
- 62.23.Hj: Nanowires
Journal
Year
Volume
Issue
Pages
1110-1112
Physical description
Dates
published
2014-11
Contributors
author
- Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
- Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
- Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
- Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
- Solid State Physics Section, Institute of Physics - Center for Science and Education, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
author
- Department of Materials Science, Silesian University of Technology, Z. Krasi«skiego 8, 40-019 Katowice, Poland
References
- [1] D. Li, M.H. Zhao, J. Garra, A.M. Kolpak, A.M. Rappe, D.A. Bonnell, J.M. Vohs, Nature Mater. 7, 473 (2008), doi: 10.1038/nmat2198
- [2] A.L. Cabrera, F. Vargas, R.A. Zarate, J. Phys. Chem. Solids 55, 1303 (1994), doi: 10.1016/0022-3697(94)90213-5
- [3] A. Starczewska, M. Nowak, P. Szperlich, B. Toroń, K. Mistewicz, D. Stróż, J. Szala, Sensor. Actuat. A-Phys. 183, 34 (2012), doi: 10.1016/j.sna.2012.06.009
- [4] M. Nowak, K. Mistewicz, A. Nowrot, P. Szperlich, M. Jesionek, A. Starczewska, Sensor. Actuat. A-Phys. 210, 32 (2014), doi: 10.1016/j.sna.2014.02.004
- [5] M. Nowak, A. Nowrot, P. Szperlich, M. Jesionek, M. Kępińska, A. Starczewska, K. Mistewicz, D. Stróż, J. Szala, T. Rzychoń, E. Talik, R. Wrzalik, Sensor. Actuat. A-Phys. 210, 119 (2014), doi: 10.1016/j.sna.2014.02.012
- [6] M. Nowak, P. Szperlich, Ł. Bober, J. Szala, G. Moskal, D. Stróż, Ultrason. Sonochem. 15, 709 (2008), doi: 10.1016/j.ultsonch.2007.09.003
- [7] T.P. Blach, E.MacA. Grey, J. Alloys Comp. 446-447, 692 (2007), doi: 10.1016/j.jallcom.2006.12.061
- [8] K. Toyoda, Ferroelectrics 69, 201 (1986), doi: 10.1080/00150198608008193
- [9] P. Szperlich, M. Nowak, Ł. Bober, J. Szala, D. Stróż, Ultrason. Sonochem. 16, 398 (2009), doi: 10.1016/j.ultsonch.2008.09.001
- [10] K. Ishikawa, W. Tomoda, K. Toyoda, J. Cryst. Growth 69, 399 (1984), doi: 10.1016/0022-0248(84)90348-8
- [11] W.J. Merz, R. Nitsche, Izv. Akad. Nauk SSSR Ser. Fiz. 28, 681 (1964)
- [12] Yu.V. Popik, V.N. Zhikharev, V.V. Betsa, Fiz. Tverd. Tela 24, 486 (1982)
- [13] R.V. Wang, D.D. Fong, F. Jiang, M.J. Highland, P.H. Fuoss, C. Thompson, A.M. Kolpak, J.A. Eastman, S.K. Streiffer, A.M. Rappe, G.B. Stephenson, Phys. Rev. Lett. 102, 047601 (2009), doi: 10.1103/PhysRevLett.102.047601
- [14] M.M. Shaijumon, S. Ramaprabhu, Chem. Phys. Lett. 374, 513 (2003), doi: 10.1016/S0009-2614(03)00741-3
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n515kz