Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1096-1099

Article title

CdSe/ZnCdSe Quantum Dot Heterostructures for Yellow Spectral Range Grown on GaAs Substrates by Molecular Beam Epitaxy

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper reports on theoretical calculations and fabrication by molecular beam epitaxy of wide-gap II-VI heterostructures emitting in the "true" yellow range (560-600 nm) at room temperature. The active region of the structures comprises CdSe quantum dot active layer embedded into a strained Zn_{1-x}Cd_{x}Se (x=0.2-0.5) quantum well surrounded by a Zn(S,Se)/ZnSe superlattice. Calculations of the CdSe/(Zn,Cd)Se/Zn(S,Se) quantum dot-quantum well luminescence wavelength performed using the envelope-function approximation predict rather narrow range of the total Zn_{1-x}Cd_{x}Se quantum well thicknesses (d ≈ 2-4 nm) reducing efficiently the emission wavelength, while the variation of x (0.2-0.5) has much stronger effect. The calculations are in a reasonable agreement with the experimental data obtained on a series of test heterostructures. The maximum experimentally achieved emission wavelength at 300 K is as high as 600 nm, while the intense room temperature photoluminescence has been observed up to λ =590 nm only. To keep the structure pseudomorphic to GaAs as a whole the tensile-strained surrounding ZnS_{0.17}Se_{0.83}/ZnSe superlattice were introduced to compensate the compressive stress induced by the Zn_{1-x}Cd_{x}Se quantum well. The graded-index waveguide laser heterostructure with a CdSe/Zn_{0.65}Cd_{0.35}Se/Zn(S,Se) quantum dot-quantum well active region emitting at λ =576 nm (T=300 K) with the 77 to 300 K intensity ratio of 2.5 has been demonstrated.

Keywords

Contributors

author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
  • St.Petersburg State Polytechnical University, St.-Petersburg, Russia
author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia
author
  • Ioffe Physical-Technical Institute of RAS, St.-Petersburg, Russia

References

  • [1] M. Klude, D. Hommel, Appl. Phys. Lett. 79, 2523 (2001), doi: 10.1063/1.1411989
  • [2] J.-I. Kasai, R. Akimoto, T. Hasama, H. Ishikawa, S. Fujisaki, S. Tanaka, S. Tsuji, Appl. Phys. Expr. 4, 082102 (2011), doi: 10.1143/APEX.4.082102
  • [3] E.V. Lutsenko, M.V. Rzheutski, G.P. Yablonskii, S.V. Sorokin, S.V. Gronin, I.V. Sedova, P.S. Kop'ev, S.V. Ivanov, M. Alanzi, A. Hamidalddin, A. Alyamani, Quantum Electron. 43, 418 (2013), doi: 10.1070/QE2013v043n05ABEH015164
  • [4] S.V. Ivanov, A.A. Toropov, S.V. Sorokin, T.V. Shubina, I.V. Sedova, A.A. Sitnikova, P.S. Kop'ev, Zh.I. Alferov, H.-J. Lugauer, G. Reuscher, M. Keim, F. Fischer, A. Waag, G. Landwehr, Appl. Phys. Lett. 74, 498 (1999), doi: 10.1063/1.123167
  • [5] I.V. Sedova, O.G. Lyublinskaya, S.V. Sorokin, S.V. Gronin, A.A. Sitnikova, S.V. Ivanov, J. Korean Phys. Soc. 53, 3012 (2008), doi: 10.3938/jkps.53.3012
  • [6] S.V. Gronin, I.V. Sedova, S.V. Sorokin, G.V. Klimko, K.G. Belyaev, A.V. Lebedev, A.A. Sitnikova, A.A. Toropov, S.V. Ivanov, Phys. Status Solidi C 9, 1833 (2012), doi: 10.1002/pssc.201100606
  • [7] I.V. Sedova, E.V. Lutsenko, S.V. Gronin, S.V. Sorokin, A.G. Vainilovich, A.A. Sitnikova, G.P. Yablonskii, A. Alyamani, D.L. Fedorov, P.S. Kop`ev, S.V. Ivanov, Appl. Phys. Lett. 98, 171103 (2011), doi: 10.1063/1.122392
  • [8] M. Shiraishi, S. Tomiya, S. Taniguchi, K. Nakano, A. Ishibashi, M. Ikeda, Phys. Status Solidi A 152, 377 (1995), doi: 10.1002/pssa.2211520206
  • [9] Handbook on Physical Properties of Semiconductors, Vol. 3, II-VI Compound Semiconductors, Springer, 2004
  • [10] R.N. Kyutt, A.A. Toropov, S.V. Sorokin, T.V. Shubina, S.V. Ivanov, M. Karlsteen, M. Willander, Appl. Phys. Lett. 75, 373 (1999), doi: 10.1063/1.124379
  • [11] N. Peranio, A. Rosenauer, D. Gerthsen, S.V. Sorokin, I.V. Sedova, S.V. Ivanov, Phys. Rev. B 61, 16015 (2000), doi: 10.1103/PhysRevB.61.16015
  • [12] C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989), doi: 10.1103/PhysRevB.39.1871
  • [13] F. Tinjod, I.-C. Robin, R. Andre, K. Kheng, H. Mariette, J. Alloys Comp. 371, 63 (2004), doi: 10.1016/j.jallcom.2003.05.006
  • [14] G. Cohen-Solal, F. Bailly, M. Barbé, J. Cryst. Growth 138, 68 (1994), doi: 10.1016/0022-0248(94)90782-X
  • [15] A. Benkert, C. Schumacher, K. Brunner, R.B. Neder, Appl. Phys. Lett. 90, 162105 (2007), doi: 10.1063/1.124379

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n511kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.