EN
This paper reports on theoretical calculations and fabrication by molecular beam epitaxy of wide-gap II-VI heterostructures emitting in the "true" yellow range (560-600 nm) at room temperature. The active region of the structures comprises CdSe quantum dot active layer embedded into a strained Zn_{1-x}Cd_{x}Se (x=0.2-0.5) quantum well surrounded by a Zn(S,Se)/ZnSe superlattice. Calculations of the CdSe/(Zn,Cd)Se/Zn(S,Se) quantum dot-quantum well luminescence wavelength performed using the envelope-function approximation predict rather narrow range of the total Zn_{1-x}Cd_{x}Se quantum well thicknesses (d ≈ 2-4 nm) reducing efficiently the emission wavelength, while the variation of x (0.2-0.5) has much stronger effect. The calculations are in a reasonable agreement with the experimental data obtained on a series of test heterostructures. The maximum experimentally achieved emission wavelength at 300 K is as high as 600 nm, while the intense room temperature photoluminescence has been observed up to λ =590 nm only. To keep the structure pseudomorphic to GaAs as a whole the tensile-strained surrounding ZnS_{0.17}Se_{0.83}/ZnSe superlattice were introduced to compensate the compressive stress induced by the Zn_{1-x}Cd_{x}Se quantum well. The graded-index waveguide laser heterostructure with a CdSe/Zn_{0.65}Cd_{0.35}Se/Zn(S,Se) quantum dot-quantum well active region emitting at λ =576 nm (T=300 K) with the 77 to 300 K intensity ratio of 2.5 has been demonstrated.