Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1079-1082

Article title

Phase Field Modeling of the Zn_{1-x}Cd_xO Solid Solutions

Content

Title variants

Languages of publication

EN

Abstracts

EN
The analysis of spinodal decomposition in the Zn_{1-x}Cd_xO ternary alloy was carried out by means of the nonlinear Cahn-Hilliard equation. Interaction parameter as a function of composition x was provided by valence force field simulations and was used in this analysis. The morphological patterns for the ternary alloys with different Cd content (x=5, 10, 50%) were experimentally obtained using the semi-implicit Fourier-spectral method. The simulated microstructure evolution Zn_{0.95}Cd_{0.05}O demonstrates that the microstructure having a form of bicontinuous worm-like network is evolved with the progress of aging. An effect of the phase-field mobility and the gradient energy on the microstructure evolution of the Zn_{1-x}Cd_xO alloys is discussed. It was found that the higher driving force for the decomposition in the higher Cd content film results in a higher decomposition rate revealed by the simulations. The temporal evolution of the simulated Zn_{0.95}Cd_{0.05}O microstructure is in good agreement with experimental results, which have been obtained for this solid solution.

Keywords

Contributors

author
  • Frantsevich Institute for Problems of Materials Science, NASU, 03680, Kiev, Ukraine
  • Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linkoping, Sweden
author
  • Ioffe Physico-Technical Institute, RAS, Saint-Petersburg, Russia
  • Saint-Petersburg Branch of Joint Supercomputer Center, RAS, Saint-Petersburg, Russia
  • St. Petersburg Academic University, Khlopina 8/3, 194021 St. Petersburg, Russia
author
  • Frantsevich Institute for Problems of Materials Science, NASU, 03680, Kiev, Ukraine

References

  • [1] J. Muth, A. Osinsky, in: Wide Bandgap Light Emitting Materials and Devices, Eds. G.F. Neumark, I.L. Kuskovsky, H. Jiang, Wiley-VCH Verlag, Weinheim 2007, p. 179
  • [2] S. Kalusniak, S. Sadofev, J. Puls, F. Henneberger, Laser Photonics Rev. 3, 233 (2009), doi: 10.1002/lpor.200810040
  • [3] I. Shtepliuk, Superlatt. Microstruct. 71, 62 (2014), doi: 10.1016/j.spmi.2014.03.028
  • [4] I. Shtepliuk, G. Lashkarev, O. Khyzhun, B. Kowalski, A. Reszka, V. Khomyak, V. Lazorenko, I. Timofeeva, Acta Phys. Pol. A 120, 914 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z5p27.pdf
  • [5] I. Shtepliuk, G. Lashkarev, V. Khomyak, P. Marianchuk, P. Koreniuk, D. Myroniuk, V. Lazorenko, I. Timofeeva, Acta Phys. Pol. A 120, A61 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z6ap18.pdf
  • [6] I. Shtepliuk, O. Khyzhun, G. Lashkarev, V. Khomyak, V. Lazorenko, Acta Phys. Pol. A 122, 1034 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/122/a122z6p18.pdf
  • [7] I. Shtepliuk, G. Lashkarev, V. Khomyak, O. Lytvyn, P. Marianchuk, I. Timofeeva, A. Ievtushenko, V. Lazorenko, Thin Solid Films 520, 4772 (2012), doi: 10.1016/j.tsf.2011.10.181
  • [8] I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, V. Lazorenko, A. Ievtushenko, M. Syväjärvi, V. Jokubavicius, R. Yakimova, Solid State Electron. 81, 72 (2013), doi: 10.1016/j.sse.2013.01 .015
  • [9] I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, A. Ievtushenko, V. Tkach, V. Lazorenko, I. Timofeeva, R. Yakimova, Appl. Surf. Sci. 276, 550 (2013), doi: 10.1016/j.apsusc.2013.03.132
  • [10] F. Bertram, S. Giemsch, D. Forster, J. Christen, R. Kling, Appl. Phys. Lett. 88, 061915 (2006), doi: 10.1063/1.2172146
  • [11] I.I. Shtepliuk, Acta Phys. Pol. A 124, 865 (2013), doi: 10.12693/APhysPolA.124.865
  • [12] V. Venkatachalapathy, A. Galeckas, M. Trunk, T. Zhang, A. Azarov, A.Yu. Kuznetsov, Phys. Rev. B 83, 125315 (2011), doi: 10.1103/PhysRevB.83.125315
  • [13] A. Singh, D. Kumar, P.K. Khanna, M. Kumar, B. Prasad, ECS J. Solid State Sci. Technol. 2, 136 (2013), doi: 10.1149/2.001309jss
  • [14] C.W. Sun, P. Xin, C.Y. Ma, Z.W. Liu, Q.Y. Zhang, Y.Q. Wang, Z.J. Yin, S. Huang, T. Chen, Appl. Phys. Lett. 89, 181921 (2006), doi: 10.1063/1.2378527
  • [15] J.W. Cahn, Acta Metall. 9, 795 (1961), doi: 10.1016/0001-6160(61)90182-1
  • [16] L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2001), doi: 10.1146/annurev.matsci.32.112001.132041
  • [17] T.W. Heo, S. Bhattacharyyay, L.-Q. Chen, Philos. Mag. 93, 1468 (2013), doi: 10.1080/14786435.2012.744880
  • [18] S.L. Alvarez, E.O. Avila-Davila, V.M. Lopez-Hirata, J.L. Gonzalez-Velazquez, J. Mater. Res. 16, 975 (2013), doi: 10.1590/S1516-14392013005000080
  • [19] S.Yu. Karpov, N.I. Podolskaya, I.A. Zhmakin, A.I. Zhmakin, Phys. Rev. B 70, 235203 (2004), doi: 10.1103/PhysRevB.70.235203
  • [20] R.M. Martin, Phys. Rev. B 10, 4005 (1970), doi: 10.1103/PhysRevB.1.4005
  • [21] T. Takayama, M. Yuri, K. Itoh, T. Baba, J.S. Harris Jr., J. Cryst. Growth 222, 29 (2001), doi: 10.1016/S0022-0248(00)00869-1
  • [22] J. Zhu, L.-Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999), doi: 10.1103/PhysRevE.60.3564
  • [23] L.-Q. Chen, J. Shen, Comput. Phys. Commun. 108, 147 (1998), doi: 10.1016/S0010-4655(97)00115-X
  • [24] A.Yu. Azarov, T.C. Zhang, B.G. Svensson, A.Yu. Kuznetsov, Appl. Phys. Lett. 99, 111903 (2011), doi: 10.1063/1.3639129
  • [25] J. Serrano, A.H. Romero, F.J. Manjon, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004), doi: 10.1103/PhysRevB.69.094306
  • [26] C. Guglieri, E. Céspedes, C. Prieto, J. Chaboy, J. Phys. Condens. Matter 23, 206006 (2011), doi: 10.1088/0953-8984/ 23/20/206006
  • [27] J. Deng, S. Rokkam, Mater. Trans. 52, 2126 (2011), doi: 10.2320/matertrans.M2011227
  • [28] J.E. Hilliard, in: Spinodal Decomposition, Ed. H.I. Aaronson, Metals Park, Ohio ASM 1970, p. 497

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n506kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.