Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 5 | 1079-1082
Article title

Phase Field Modeling of the Zn_{1-x}Cd_xO Solid Solutions

Title variants
Languages of publication
The analysis of spinodal decomposition in the Zn_{1-x}Cd_xO ternary alloy was carried out by means of the nonlinear Cahn-Hilliard equation. Interaction parameter as a function of composition x was provided by valence force field simulations and was used in this analysis. The morphological patterns for the ternary alloys with different Cd content (x=5, 10, 50%) were experimentally obtained using the semi-implicit Fourier-spectral method. The simulated microstructure evolution Zn_{0.95}Cd_{0.05}O demonstrates that the microstructure having a form of bicontinuous worm-like network is evolved with the progress of aging. An effect of the phase-field mobility and the gradient energy on the microstructure evolution of the Zn_{1-x}Cd_xO alloys is discussed. It was found that the higher driving force for the decomposition in the higher Cd content film results in a higher decomposition rate revealed by the simulations. The temporal evolution of the simulated Zn_{0.95}Cd_{0.05}O microstructure is in good agreement with experimental results, which have been obtained for this solid solution.
  • Frantsevich Institute for Problems of Materials Science, NASU, 03680, Kiev, Ukraine
  • Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linkoping, Sweden
  • Ioffe Physico-Technical Institute, RAS, Saint-Petersburg, Russia
  • Saint-Petersburg Branch of Joint Supercomputer Center, RAS, Saint-Petersburg, Russia
  • St. Petersburg Academic University, Khlopina 8/3, 194021 St. Petersburg, Russia
  • Frantsevich Institute for Problems of Materials Science, NASU, 03680, Kiev, Ukraine
  • [1] J. Muth, A. Osinsky, in: Wide Bandgap Light Emitting Materials and Devices, Eds. G.F. Neumark, I.L. Kuskovsky, H. Jiang, Wiley-VCH Verlag, Weinheim 2007, p. 179
  • [2] S. Kalusniak, S. Sadofev, J. Puls, F. Henneberger, Laser Photonics Rev. 3, 233 (2009), doi: 10.1002/lpor.200810040
  • [3] I. Shtepliuk, Superlatt. Microstruct. 71, 62 (2014), doi: 10.1016/j.spmi.2014.03.028
  • [4] I. Shtepliuk, G. Lashkarev, O. Khyzhun, B. Kowalski, A. Reszka, V. Khomyak, V. Lazorenko, I. Timofeeva, Acta Phys. Pol. A 120, 914 (2011)
  • [5] I. Shtepliuk, G. Lashkarev, V. Khomyak, P. Marianchuk, P. Koreniuk, D. Myroniuk, V. Lazorenko, I. Timofeeva, Acta Phys. Pol. A 120, A61 (2011)
  • [6] I. Shtepliuk, O. Khyzhun, G. Lashkarev, V. Khomyak, V. Lazorenko, Acta Phys. Pol. A 122, 1034 (2012)
  • [7] I. Shtepliuk, G. Lashkarev, V. Khomyak, O. Lytvyn, P. Marianchuk, I. Timofeeva, A. Ievtushenko, V. Lazorenko, Thin Solid Films 520, 4772 (2012), doi: 10.1016/j.tsf.2011.10.181
  • [8] I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, V. Lazorenko, A. Ievtushenko, M. Syväjärvi, V. Jokubavicius, R. Yakimova, Solid State Electron. 81, 72 (2013), doi: 10.1016/j.sse.2013.01 .015
  • [9] I. Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, A. Ievtushenko, V. Tkach, V. Lazorenko, I. Timofeeva, R. Yakimova, Appl. Surf. Sci. 276, 550 (2013), doi: 10.1016/j.apsusc.2013.03.132
  • [10] F. Bertram, S. Giemsch, D. Forster, J. Christen, R. Kling, Appl. Phys. Lett. 88, 061915 (2006), doi: 10.1063/1.2172146
  • [11] I.I. Shtepliuk, Acta Phys. Pol. A 124, 865 (2013), doi: 10.12693/APhysPolA.124.865
  • [12] V. Venkatachalapathy, A. Galeckas, M. Trunk, T. Zhang, A. Azarov, A.Yu. Kuznetsov, Phys. Rev. B 83, 125315 (2011), doi: 10.1103/PhysRevB.83.125315
  • [13] A. Singh, D. Kumar, P.K. Khanna, M. Kumar, B. Prasad, ECS J. Solid State Sci. Technol. 2, 136 (2013), doi: 10.1149/2.001309jss
  • [14] C.W. Sun, P. Xin, C.Y. Ma, Z.W. Liu, Q.Y. Zhang, Y.Q. Wang, Z.J. Yin, S. Huang, T. Chen, Appl. Phys. Lett. 89, 181921 (2006), doi: 10.1063/1.2378527
  • [15] J.W. Cahn, Acta Metall. 9, 795 (1961), doi: 10.1016/0001-6160(61)90182-1
  • [16] L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2001), doi: 10.1146/annurev.matsci.32.112001.132041
  • [17] T.W. Heo, S. Bhattacharyyay, L.-Q. Chen, Philos. Mag. 93, 1468 (2013), doi: 10.1080/14786435.2012.744880
  • [18] S.L. Alvarez, E.O. Avila-Davila, V.M. Lopez-Hirata, J.L. Gonzalez-Velazquez, J. Mater. Res. 16, 975 (2013), doi: 10.1590/S1516-14392013005000080
  • [19] S.Yu. Karpov, N.I. Podolskaya, I.A. Zhmakin, A.I. Zhmakin, Phys. Rev. B 70, 235203 (2004), doi: 10.1103/PhysRevB.70.235203
  • [20] R.M. Martin, Phys. Rev. B 10, 4005 (1970), doi: 10.1103/PhysRevB.1.4005
  • [21] T. Takayama, M. Yuri, K. Itoh, T. Baba, J.S. Harris Jr., J. Cryst. Growth 222, 29 (2001), doi: 10.1016/S0022-0248(00)00869-1
  • [22] J. Zhu, L.-Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999), doi: 10.1103/PhysRevE.60.3564
  • [23] L.-Q. Chen, J. Shen, Comput. Phys. Commun. 108, 147 (1998), doi: 10.1016/S0010-4655(97)00115-X
  • [24] A.Yu. Azarov, T.C. Zhang, B.G. Svensson, A.Yu. Kuznetsov, Appl. Phys. Lett. 99, 111903 (2011), doi: 10.1063/1.3639129
  • [25] J. Serrano, A.H. Romero, F.J. Manjon, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004), doi: 10.1103/PhysRevB.69.094306
  • [26] C. Guglieri, E. Céspedes, C. Prieto, J. Chaboy, J. Phys. Condens. Matter 23, 206006 (2011), doi: 10.1088/0953-8984/ 23/20/206006
  • [27] J. Deng, S. Rokkam, Mater. Trans. 52, 2126 (2011), doi: 10.2320/matertrans.M2011227
  • [28] J.E. Hilliard, in: Spinodal Decomposition, Ed. H.I. Aaronson, Metals Park, Ohio ASM 1970, p. 497
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.