PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-140-A-144
Article title

Ultrathin Niobium in the Si/Nb/Si Trilayers

Content
Title variants
Languages of publication
EN
Abstracts
EN
We study magnetotransport properties of the Si/Nb/Si trilayers, in which the thickness of niobium, d, changes from 1.1 nm to 50 nm, while the thickness of Si is fixed at 10 nm. The niobium films are amorphous for d < 4 nm, while in thicker films the alligned polycrystalline grains are formed. We observe that the Hall coefficient changes sign into negative in the films with d < 1.6 nm. We also find that in the ultrathin films the magnetic field induces a transition from the superconducting into a metallic phase with the resistance smaller than the normal-state resistance.
Keywords
EN
Year
Volume
126
Issue
4a
Pages
A-140-A-144
Physical description
Dates
published
2014-10
References
  • [1] K. Fuchs, Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)
  • [2] V.F. Gantmakher, V.T. Dolgopolov, Usp. Fiz. Nauk 3, 180 (2010)
  • [2a] V.F. Gantmakher, V.T. Dolgopolov, Phys. Usp. 53, 1 (2010), doi: 10.3367/UFNe.0180.201001a.0003
  • [3] C. Delacour, L. Ortega, M. Faucher, T. Crozes, T. Fournier, B. Pannetier, V. Bouchiat, Phys. Rev. B 83, 144504 (2011), doi: 10.1103/PhysRevB.83.144504
  • [4] A. Semenov, A. Engel, K. Il'in, G. Gol'tsman, M. Siegel, H.-W. Hübers, Eur. Phys. J. Appl. Phys. 21, 171 (2003), doi: 10.1051/epjap:2003009
  • [5] E. H. Sondheimer, Phys. Rev. 80, 401 (1950), doi: 10.1103/PhysRev.80.401
  • [6] K. Yoshii, H. Yamamoto, K. Saiki, A. Koma, Phys. Rev. B 52, 13570 (1995), doi: 10.1103/PhysRevB.52.13570
  • [7] S.I. Park, T.H. Geballe, Phys. Rev. Lett. 57, 901 (1986), doi: 10.1103/PhysRevLett.57.901
  • [8] T.R. Lemberger, I. Hetel, J.W. Knepper, F.Y. Yang, Phys. Rev. B 76, 094515 (2007), doi: 10.1103/PhysRevB.76.094515
  • [9] C.M. Hurd, The Hall Efect in Metals and Alloys, Plenum Press, New York 1972
  • [10] K. Pomoni, Ch. Krontiras, J. Saimi, Appl. Phys. 23, 354 (1990), doi: 10.1088/0022-3727/23/3/015
  • [11] J.N. Cooper, P. Cotti, F.B. Rasmussen, Phys. Lett. 19, 560 (1965)
  • [12] J.C. Garland, Phys. Rev. 185, 1009 (1969), doi: 10.1103/PhysRev.185.1009
  • [13] L.F. Mattheiss, Phys. Rev. B 1, 373 (1970), doi: 10.1103/PhysRevB.1.373
  • [14] A.R. Jani, N.E. Brener, J. Callaway, Phys. Rev. B 38, 9425 (1988), doi: 10.1103/PhysRevB.38.9425
  • [15] M.P.A. Fisher, Phys. Rev. Lett. 65, 923 (1990), doi: 10.1103/PhysRevLett.65.923
  • [16] H.M. Jaeger, D.B. Haviland, B.G. Orr, A.M. Goldman, Phys. Rev. B 40, 182 (1989), doi: 10.1103/PhysRevB.40.182
  • [17] Y. Liu, D.B. Haviland, L.I. Glazman, A.M. Goldman, Phys. Rev. Lett. 68, 2224 (1992), doi: 10.1103/PhysRevLett.68.2224
  • [18] A. Yazdani, A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995), doi: 10.1103/PhysRevLett.74.3037
  • [19] D. Ephron, A. Yazdani, A. Kapitulnik, M.R. Beasley, Phys. Rev. Lett. 76, 1529 (1996), doi: 10.1103/PhysRevLett.76.1529
  • [20] J.A. Chervenak, J.M. Valles, Phys. Rev. B 61, R9245 (2000), doi: 10.1103/PhysRevB.61.R9245
  • [21] S. Okuma, Y. Imamoto, M. Morita, Phys. Rev. Lett. 86, 3136 (2001), doi: 10.1103/PhysRevLett.86.3136
  • [22] Y. Seo, Y. Qin, C.L. Vicente, K.S. Choi, J. Yoon, Phys. Rev. Lett. 97, 057005 (2006), doi: 10.1103/PhysRevLett.97.057005
  • [23] Y.H. Lin, J.J. Nelson, A.M. Goldman, Phys. Rev. Lett. 109, 017002 (2012), doi: 10.1103/PhysRevLett.109.017002
  • [24] W. Liu, L. Pan, J. Wen, M. Kim, G. Sambandamurthy, N.P. Armitage, Phys. Rev. Lett. 111, 067003 (2013), doi: 10.1103/PhysRevLett.111.067003
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n4a33kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.